TList™7

Copyright © 1994 – 2004

Bennet-Tec Information Systems, Inc.

All rights reserved

Documentation on TList 7
(Build 7.0.48)

- - - - -

New Features / Enhancements

Introduced Since TList 6/Pro

TABLE OF CONTENTS

1) NEW FEATURES

 - New Features / Enhancements introduced with TList 7

1) CRITICAL SYNTAX CHANGES

 - Changes to TList which may require code changes to existing projects

2) TECHNICAL DESCRIPTION

 - New or Updated Properties, Methods, Events

Comments on both TList 7 OCX and on this Documentation are welcome

and would be much appreciated.
Please forward your e-mail to

 Support_TList@Bennet-Tec.Com

For technical questions, please include your TList 7 License Serial Number,

the TList 7 version number, and any details you can provide with your question.

Documentation Date: 30 September 2002
· TList 7 – NEW FEATURE LIST -

New Features in TList 7 (features introduced since TList 6/Pro) include:

· Windows XP Support
TList 7 is specifically designed and tested to support Windows XP. TList 7 is formally supported for use under Windows 95, 98, 2000, NT 4, ME, and XP, and Windows 2003 Server.
Note – while there are no known problems with earlier versions of TList running in Windows XP, this is the first edition of TList specifically designed to supporting XP.

· Grid Cell Navigation and Selection
TList 7 provides support for Cell-by-Cell, Row-by-Row, and Column-by-Column navigation and selection within Grids using Mouse or Keyboard.
New selection modes provide for flexibility in Single or Multi-Cell Selection within a Grid and can be combined with Single and Multiple Selection of Tree items and settings for multiple ItemGrids in the same data set.

(Refer to the
 Activate Method,
 GridCellActivate / GridCellDeactivate Events
 SelBorderStyle, SelBorderColor
 Activatable, Selectable
 ActivationMode, KeyboardActivation, SelectionMode SelectionOptions
 Col and Row, ActiveCell, ActiveRow
 Selected, SelectedCell, SelectedRows, and SelectedColumns
properties for further information.
· Enable or Disable Rows, Columns, or Cells
TList 7 provides control over the ability of an end-user to select or navigate through rows or cells. Individual rows and cells may be disabled for navigation and/ or selection.

(Refer to the Activatable and Selectable properties for further information
· Grid Cell and Column References by Value Name
TList 7 supports referencing ColDefs and Cells by by Valuename.
For example
 Grid.ColDefs ("some name").Width =
 Grid.Cells(Row, "some name").Value =

· Coupling of Navigation and Editing Z
TList 7 can now automatically initiate in-place editing upon end-user navigation to a List / Tree Item or Grid Cell.

· 3-D TreeLines support
TList 7 supports presentation of 3-D style TreeLines.

(Refer to the TreeLinesColor, TreeLinesHighlightColor and TreeLinesShadowColor properties for further information
· 3-D Shadowed Text Support
TList 7 supports presentation of a shadowed Font3D style for text. This can be set for the entire TList control or for any column, row, or specific cell.

(Refer to the Font3D, FontShadowColor and FontShadowSelectedColor properties for further information

· Drag Drop Enhancements
TList 7 now provides FULL support for OLE Drag Drop Previous TList editions supported TList as an OLE Drag Destination but not an OLE Drag Source.
TList Automated DragDrop previously supported only within VB is now fully supported within all development environments – including within VC, Delphi, Access, even within HTML pages.

(Refer to the OleDragDropXXXX and OLEDragMode properties for further information

· Column Dragging
TList 7 provides support for end-user dragging of columns with a mouse

(Refer to the DragColumnsEnabled property for further information

· Automated Column And Row Resizing
New methods to automatically resize columns and rows upon demand to fit data.
New property to automatically resize columns upon user double click of column separator

(Refer to the AutoSizeColumn, AutoSizeRow methods, and AutoSizeOptions property for further information

· Enhanced Format Support
TList 7 provides enhanced support for formatting data cells.
TList 7 supports practically all VB formats.

(Refer to the Format property for further information

· Multi-Column Sorting
TList 7 provides support for sorting using multiple SubOrder keys – either Grid Columns or ItemValues (hidden item data). In other words the data can be sorted by multiple criteria such as City, State and Zip code.

(Refer to the ItemSortingXXX and SortingXXX properties for further information

· Automatic Hierarchic Numbering of Row Headers
TList 7 can automatically assign Hierarchic Style numbering to Row Headers in a TList Grid, for example:
 1
 2
 2.1
 2.1.1
 2.2

(Refer to the AutoFillRowTitles property for further information

· Checkbox Sorting
TList 7 provides a new Sorting Style to sort items according to Checkbox status

(Refer to the ItemSortingStyle and SortingStyle properties for further information

· Grid Row and Column Title Click Events
TList 7 provides events when the user clicks row or column titles in any Grid object in TList.
These events are activated instead of the GridCellClick event for these grid cells.

(Refer to the GridRowTitleClick, GridColumnTitleClick, and GridCornerTitleClick Events for further information

· Enhanced Control over Scrolling
TList 7 provides increased control over Scrolling and Scrollbar positioning.

(Refer to the ScrollHRange, ScrollHPosition, ScrollVPosition, ScrollVRange properties for further information

· RowDefsObject
TList 7 provides a RowDef object for additional object oriented control over formatting of data within a Grid.

· Margin Offsets for Each Column or Cell
TList 7 provides support for specifying a horizontal offset of text and images from the boundary of any column or grid cell

(Refer to the MarginTop, MarginLeft, MarginBottom and MarginRight properties for further information

· Titles Resize Event
TList 7 provides a new TitlesResize Event triggered when end-user resizes a Column or Row by dragging with the mouse

(Refer to the TitleResize Eventproperty for further information

· BottomIndex Property
Previously Read-Only, this property is now settable and will scroll TList as required to insure item is within the visible range of the control.

(Refer to the BottomIndex property for further information

· PostScript Printer Support
 TList now automatically detects postscript printers.
 In the past it was necessary to set the PostScriptDC property.
 The PostscriptDC property is now ignored and printer type
 detection is automatic

(Refer to the PostScriptDC property for further information

· Subscription License / Future TList 7 feature Expansion
TList 7 licensing options now include a Subscription License Option. New features will be introduced to TList 7 without requirement for a major upgrade. These features will not affect already compiled applications (all future editions of TList 7 will be backward compatible) but will be available for use by developers purchasing the Subscription License.
Completed Subscription License features include:
 Frozen Columns
Planned Subscription License features include:
 XML Load and Save
 HTML Export
 TList Combobox Presentation Style (use of TList as a Hierarchic ComboBox)
 Simple Database Binding
 Custom Text for tooltips
 Show TList text during Drag/Drop
 Grid Design Templates
 A mechanism for reducing the steps to create the same
 grid structure for multiple ItemGrids.
 Create a DefaultItemGrid object.
 When a new ItemGrid is added to TList, it will then take on the settings
 of the DefaultItemGrid
 - OR - specify Leveldefs.ItemGrid
 - OR - provide ability to define a GridStyle Object
 and apply it to any grid by calling a SetGridStyle method
 Other features as may be generally requested,
 or potentially as sponsored by individual customers.

Subscription License holders will also receive FREE UPGRADES to major new TList editions for 1 year from date of purchase of TList 7 and Subscription License. This will definitely include TList .NET Winforms, and may include such products as TList .NET Webforms .

· CRITICAL SYNTAX CHANGES -

A) Critical Syntax Changes Since TList 6 /Pro

The following changes in TList may require code changes to TList 6 projects.

 * GETITEMRECT – The RECT structure used with this method now has coordinates declared as LONG type instead of Integer. Change the declaration for RECT structure.

 * GRID CELL CLICK EVENT – This event will no longer be fired when end users click on Row Titles or Column Titles. Instead trap the GridColumnTitleClick or GridRowTitleClick or GridCornerTitleClick event.

 * SORTING – ItemSorted, ItemSortingMethod, ItemSortingKey

 The ItemSorted property now specifies just On and Off

 A new ItemSortingMethod should be used to specify Ascending or Descending order.

 0
TLSORT_ASCENDING
(Default) Sort items in the ascending order.

 1
TLSORT_DESCENDING
Sort items in the descending order.

 The ItemSortingKey property now determines whether the data is sorted by visible text

 (if empty or unassigned), or by an ItemValue (if assigned an ItemValue name).

 The ItemSortingMethod and ItemSortingKey properties also have an optional SortPriority parameter to allow sorting by multiple values(visible data and/or item values)

 * SORTING – Sorted, SortingMethod

 The Values assigned to the Sorted property have been changed from Boolean to Enumated 0/1/2

 The Value –1 for SortingMethod is no longer supported

 An item may be sorted by a prioritized list of multiple Columns or ValueNames,

each with it's own Sorting Style.

 * TITLES RESIZE EVENT

An additional parameter, objGrid has been added to the event declaration to identify the grid in which the resizing occurs.

 * GetItemRect method – The types of 2nd parameters has changed to enumerated – does not require code changes

* EDITING EVENTS

AfterEditing and RequestEditing – type declaration for parameter holding the data has been changed from String to Variant. An additional parameter, vConvertedText, has been added to AfterEditing event to provide enhanced support for Combobox editing

 TList 6

Sub AfterEditing(ItemIndex As Long, EditedText As String, CancelledBy As Integer)

Sub RequestEditing(Cancel As Integer, ItemIndex As Long, TextToEdit As String, Options As Integer)

 TList 7:

Sub AfterEditing(ByVal ItemIndex As Long, ByVal vEditedText As Variant,
vConvertedText As Variant, ByVal CancelledBy As Integer)

Sub RequestEditing(Cancel As Integer, ItemIndex As Long, TextToEdit,
Options As ERequestEditingOptions)

 * Grid Row Selection Highlighting

 Selection Highlighting has been improved:

 - The ColumnHeaders of the ChildItemGrid are no longer shown as selected
 when the parent of the ItemGrid is selected.

 - The RowHeader cell is not shown as selected when an item in a Grid is selected.

 - by default the InvStyle settings no longer apply to rows within a TreeGrid

 We (and most customers who commented) felt that when an item is in a Grid
 it does not look correct to apply this setting.

 HOWEVER , you can still achieve the old effect by setting the Modifications Property

 TList1.Modifications = TList1.Modifications _

 OR TL_MOD_ALWAYS_USE_INVSTYLE

 TList1.InvStyle = TLINVS_TEXT

 * DRAG AND DROP – DragDrop, DragOver events, and AutoDragDrop processing

 A) TList now handles Automated Drag and Drop internally using OLE Drag Drop instead of VB style DragDrop technology. As a result the VB events DragDrop and DragOver can no longer be triggered as a result of automated DragDrop actions.

 Instead use the DragDropEx and DragOverEx events for handling action in response to automated drag and drop, or modify code to make use of new OleDragDrop and OleDragOver events.

B) The methods BeforeDrag, OnDragDrop and OnDragOver are no longer used and should be removed from the project.

C) The DropTarget property which was used in connection with VB Drag Drop is now used instead for OLE DragDrop It is no longer supported for use with VB DragDrop

 Workaround - the DropTarget may be retrieved within DragDrop, and DragOver events using the following code

 Dim nX As Integer, nY As Integer, DropTarget As Long

 nX = X / Screen.TwipsPerPixelX

 nY = Y / Screen.TwipsPerPixelY

 DropTarget = TList1.GetItemByXY(nX, nY, PTFIND_ITEM)

D) For examples of use of VB Drag Drop mechanisms see the

 updated sample VB project

 "Sample 07. Using VB Drag-Drop"

E) The Best approach for most users of older TList editions is to adopt the new Automated Drag drop functionality of TList. This can meet most application needs and requires very little coding.

Just set the AutoDragMode property of TList – That’s it, and you are done. Or set OleDragMode and OleDropMode properties.

F) The DragHighlight property is now used only in OLEDragDrop mode. It no longer applies to VB Style DragDrop. To simulate DragHighlight when using VBStyle Drag Drop

Set the ListIndex property within the DragOver event as user moves over some item

For instance

 Dim nX As Integer, nY As Integer, DropTarget As Integer

 If Source.Tag = "TREE" Then ' Source is a TList control

 nX = X / Screen.TwipsPerPixelX

 nY = Y / Screen.TwipsPerPixelY

 TList1.ListIndex = DropTarget

 End If

B) Critical Syntax Changes in Formal Release
 (compared to TList 7 beta build 7.0.14)
The following changes in TList 7 occurred upon formal release

Note that now the product is formally released, all future editions of TList 7 OCX will be backward compatible with the formal release.

 * GridCellDeactivate – ItemIndex parameter has been removed from 7.0.14 to 7.0.16

 * GridRowDeactivate – ItemIndex parameter has been removed from 7.0.14 to 7.0.16

 * Activation property – Name changed to Activatable from 7.0.14 to 7.0.16

 * SORTING – the syntax of the following properties have been changed: ItemSorted, Sorted

 * ActivationMode – The values applied to constants, TL_ACTIVMODE_ROW, TL_ACTIVMODE_CELL, TL_ACTIVMODE_MIXED, have changed from 7.014 to 7.0.16,
and the default value 0 and default behavior is now associated with constant TL_ACTIVMODE_ITEM (value 0) which provides improved backward compatibility with TList 6.

 * Grid Cell References – GridObject.Cells(Row, Col) property – parameter type change

TList 6

 Cells(RowIndex As Long, ColIndex As Long) As TListGridCell

TList 7

 Cells(RowIndex As Long, ColIndex) As TlistGridCell As TListGridCell

The second parameter of the Cells property is now a Variant.

In the past this accepted only a long integer reference to a Column Index.

The second parameter can now also accept a string to be interpreted as a ColDef.ValueName

Thus the following syntax is now valid for assigning the value "Gates" to a cell in row 5 in the column which has been aassigned valuename "Last Name"

 TList.Grid.Cells(5, "Last Name").Value = Gates

Assuming TList.Grid.ColDefs(3).ValueName = "Last Name", this would be the same as writing TList.Grid.Cells(5, 3).Value = Gates.

 * AfterEditing Event –An additional parameter, vConvertedText, has been added to provide enhanced support for Combobox editing

 TList 7.17 and earlier

Sub TList7_AfterEditing(ByVal ItemIndex As Long, EditedText As Variant,
ByVal CancelledBy As Integer)

 TList 7.18 and later

Sub AfterEditing(ByVal ItemIndex As Long, ByVal vEditedText As Variant,
vConvertedText As Variant, ByVal CancelledBy As Integer)

 * InvStyle property – For improved presentation the InvStyle settings are no longer applied to items within a Grid unless the Modifications property is also set. For items outside a grid the InvStyle property works as in earlier editions of TList

TECHNICAL DESCRIPTION

– New or Updated Properties, Methods, Events

Activate Method (TListGrid object)

Applies to

TListGrid object

Description

This method activates any cell / row of a TListGrid object.
 (Unless such activation disabled by the cell or row's Activatable property)

Visually the Active Cell/Row is shown with a Focus Rectangle (depending on the setting of the FocusRectStyle property)

Syntax

[TListGrid].Activate (ByVal RowIndex As Long, ByVal ColIndex As Long)
Settings

Valid values for RowIndex and ColIndex parameters are dependant upon the ActivationMode property as presented in the following table:

	ActivationMode property
	Valid RowIndex values
	 Valid ColIndex values

	TL_ACTIVMODE_ITEM,

Or

TL_ACTIVMODE_ROW
	Any valid row index for the particular TListGrid object.

Setting to –1 will deactivate any active row, removing the focus (as if setting TList1.ListIndex = -1).
	-1

(ColIndex can't be set to anything except –1 in this Activation Mode)

	TL_ACTIVMODE_CELL
	Any valid row index.

Setting to –1 will deactivate any active cell regardless of ColIndex value.
	Any valid column index

Setting to –1 will deactivate any active cell regardless or RowIndex value.

	TL_ACTIVMODE_MIXED
	Any valid row index.

Setting to –1 will deactivate any active row / cell.
	Any valid column index.

Setting to –1 will deactivate any active cell and make the row with index = RowIndex the active one

Note: setting both ColIndex and RowIndex parameters to –1 is a valid operation for any ActivationMode setting that will deactivate any previously active cell / row / item.

Calling the Activate method with valid Row and Column Index parameters, while in Mixed Activation Mode automatically toggles TList to cell-by-cell activation state within mixed mode as if user hits <Shift> <Space>.

Remarks

Calling this method to activate a cell or row of a grid, that was not previously active, forces the Grid containing the newly activated cell or row to become active.

Example

Make row 5 of the grid active

' Assumes item or Row Mode Activation Mode

Call TList1.Grid.Activate(5, -1)

'...

'Activate Cell in Row 10, Column 11

' Assumes Cell or Mixed Activation Mode

Call TList1.Grid.Activate(10,11)

'...

'deactivate the currently active cell

Call TList1.Grid.Activate(-1,-1)

See Also

Activable property

KeyboardActivation Property (TList object)

Description

This property controls how the user navigates (moves the focus specifying the Active Cell) through the Tree Grid structure using the keyboard.

Applies to

TList object

Syntax

[TList].KeyboardActivation = [long]

Settings

The KeyboardActivation property is a bit-field valued property set by OR’ing the desired combination of flag values:

	Constant
	Setting
	Description

	TL_KBDACTIV_NONE
	0
	(Default setting) The Up and Down arrows keys move the focus through the whole TREE / GRID structure. In this mode Right and Left arrow keys open/close a Tree branch if necessary (dependant on ExplorerCompatible property) and then function as Down and Up arrow keys. So while pressing Up and Down keys user visits all sub-branches and parent items if they are accessible (opened, etc). The tab key may be used to switch focus out of TList to another control on the form except as modified by other flag settings.

	TL_KBDACTIV_TAB
	&H1
	The TAB key is enabled to navigate among Grid Cells and items in a Tree.

The focus is moved to the next active item, cell, or row if the user presses the TAB key, and the previous item if the user presses SHIFT+TAB combination.

Note: the TAB key will work together (not substitute) with the Right, Left, Up, and Down arrow keys.

	TL_KBDACTIV_LEAVEONTAB
	&H2
	The focus leaves the TList control when the user presses TAB while the focus is on the last cell in the grid or the last open item in the tree, or when the user presses SHIFT+TAB while the first cell/item is active.

	TL_KBDACTIV_LEVEL
	&H4
	Navigation by Tree Level. . The focus is restricted to items/ grid cells at the same hierarchic level as the current active cell or item when navigating with the keyboard.

The Up and Down arrow keys will move the focus only inside the current hierarchy level of items / grids.
TAB keystrokes move the focus from the last cell in an ItemGrid to the next item or first cell in the next TreeGrid if one exists at the same hierarchy in the tree structure.
 SHIFT+Tab will move backward in the same manner

Note: Using LEFT / RIGHT arrow keys are similarly restricted by level.

	TL_KBDACTIV_ACTIVEGRIDONLY
	&H8
	Applied only for movement within a grids. Moves the focus (active cell/row) only within the active grid object; if there are any subordinate grids or items the focus will not pass through them.

Example

TList.KeyboardActivation = TL_KBDACTIVE_TB _

 OR TL_KBDACTIV_LEAVEONTAB

See Also

ActivationMode property, Activable property

ActivationMode Property (TListGrid object)

Description

This property specifies the activation / navigation mode that TList uses when within a Grid.

By Activation we mean – placing the focus upon a row or cell – generally resulting in the drawing of a focus rectangle around the cell.

By Navigation we mean the moving around within TList – changing the activated row or cell by way of keyboard or mouse.

By Selection we mean highlighting a row or cell – generally resulting in reverse coloring of the cell. Activation and Navigation do NOT necessarily imply Selection. TIP: If desired, cells may be easily selected and deselected during activation and deactivation within the GridCellActivate and GridCellDeactivate Events.

Outside a Grid (when dealing with ordinary List or Tree items in TList) the user navigates on a row by row basis – clicking anywhere in a row, or using the keyboard arrow keys.

Within a Grid there are four types of navigation / selection: item-by-item, row-by-row, cell-by-cell and row/cell combined mode.

· Item mode (default) – This mode primarily designed to provide backward compatibility with older versions of TList.
In Item mode activation within a grid is handled as if the rows are just ordinary items within the main list / tree; The focus rectangle includes the entire item area including the row title. Clicking the mouse anywhere along a row – even beyond the left and right boundaries of the grid – can activate the row
We recommend setting SelectionMode = TL_SELMODE_INHERITED in combination with this mode.

· Row mode - is the same as Item mode except

a) Mouse clicks adjacent to grid rows but outside grid boundaries do not activate any grid rows..

b) The focus rectangle is drawn around row cells excluding row title cell.

c) Grid Column Titles of ItemGrids are not drawn as selected when the user selects the parent of an ItemGrid, and

d) Row Titles are not drawn as selected unless the TL_SELOPT_MARKSELECTED_ROWCOLTITLE flag is set for the grid's SelectionOptions property..

· Cell mode – In Cell mode TList allows activation and selection of individual grid cells, navigating from cell to cell and selecting cells by either keyboard or mouse. Mouse Clicks adjacent to grid cells but outside the grid boundaries do not activate any grid cells..

· Mixed mode – In Mixed mode the user may toggle between Row Mode behavior and Cell Mode behavior, full row and cell-by-cell, using either keyboard or mouse action. Clicking the mouse on any row title switches TList to full row selection / activation mode. Clicking on any particular grid cell switches to cell by cell selection / activation. The user also toggle the selection / activation mode using the <SHIFT>
 + <SPACE> keyboard combination. The drawing of a focus rectangle around either a single cell or a complete row, as well as the selection of a single cell or complete row, will continue in the same state as the user navigates through the tree until the user toggles, the selection / activation mode or the mode is changed by code. Activation (responding to the mouse input) affects only internal grid area, clicking outside grid ignored.

Modes comparison table

This is a list of differences in the behavior of the control between modes.

	 End User Action
	Response: ActivationMode
 = Item Mode
	Response: ActivationMode

 = Row, Cell, or Combined Mode

	Clicking outside ItemGrid object (on the left or right side)
	The item/row to the left or right of the click location is activated
	The Activation of items, cells, and rows within TList is NOT changed. It is, as the click action did not occur.

	Clicking item grid column titles (for tree item that has an ItemGrid as a child).
	Activates parent item.
	Parent item is not activated

	Clicking a cell, or using the keyboard to navigate
	The focus rectangle is drawn around the entire item area (from left side of TList's client area to the right side and with the height of the row)
	The focus rectangle is drawn around either the row or an individual cell depending on the Activation mode.

Applies to

TListGrid object

Syntax

[TListGrid].ActivationMode = [enum]
Settings

Settings for the ActivationMode property are:

	Constant
	Setting
	Description

	TL_ACTIVMODE_ITEM
	0
	(Default). Activation on item-by-item basis.

	TL_ACTIVMODE_ROW
	1

	Activation/selection on row-by-row basis.

	TL_ACTIVMODE_CELL
	2

	Activation/selection on cell-by-cell basis

	TL_ACTIVMODE_MIXED
	3

	Combination of two modes (row and cell) with ability to switch between them via keyboard or mouse.

See Also

KeyboardActivation property

SelectionMode property (TListGrid object)

Description

The SelectionMode property controls the how objects (rows and/or cells) are selected within a particular TListGrid object. This can apply to either an Item Grid or for the primary TList Grid containing the complete data set.

There are three selection modes:

1. Inherited selection - In this mode selection within a grid is handled as if the rows are just ordinary items within the main list / tree. The selection mode is then specified by the MultiSelect property of the TList object. (see MultiSelect property for details).

2. single selection - In this selection mode the user can select only one row or one cell at a time from the specified Grid. (Selection of Rows or Cells is dependant on the ActivationMode property of the grid)

The setting of the TList MultiSelect property is overridden within the Grid (even if TList.MultiSelect allows multiple selection, only a single element of the grid may be selected).

When applied to an ItemGrid, the selection in this mode is completely independent from the rest of the TList structure (items outside the ItemGrid or within other ItemGrids).

When applied to an ItemGrid, the selection status will be preserved when the user leaves a grid and moves to an object outside the grid using keyboard or mouse. Note that if TList.MultiSelect is False (allowing only a single selection outside the grid, but an ItemGrid's SelectionMode is set to SingleSelection, this may result in multiple TList items being selected – a maximum of one outside any item grids, and a maximum of one inside each ItemGrid.

In order to select a row or a cell, the end user may press the <SPACE> key on the keyboard while the focus is on the cell (while the desired row/cell is active – as marked with focus rectangle), or single click on the desired cell or row using the mouse. Any previous selection in the same item grid is automatically deselected when a new element is selected. (Deselection of elements outside the grid may be depends on the setting of TList’s Multi-Select Mode)

The activation mode (the ability to set the focus upon individual rows, individual cells or a combination of rows and cells) is controlled via the ActivationMode property of the Grid.

3. multiple selection. In this selection mode the user can select several rows or cells from the specified grid. (Selection of Rows or Cells is dependant on the ActivationMode property of the grid)

As with Single Selection mode, the selection is completely independent from the rest of the tree structure or other grid object. Even if TList.MultiSelect is False and only allows Single Selection outside the Grid, multiple items may be selected inside a Grid.

The selection status will be preserved when user leaves a grid object and moves to another part of the tree using keyboard or mouse.

When applied to an ItemGrid, the selection status will be preserved when user leaves a grid and moves to an object outside the grid using keyboard or mouse.

· Keyboard interaction:
To select/deselect a row or a cell, the user has to press SPACE key while the desired element is activate (marked with focus rectangle). The behavior is similar to that set for ordinary List / Tree items (outside a grid) using the Simple Multiple Selection mode of the TList.MultiSelect property.

To select a set of the rows or cells, the user can hold SHIFT key and use Up/Down/Left/Right arrow keys. Note: in case of using SHIFT+arrow key combination any previous selection (in the same grid) will be discarded and the new selection extents from the previous active row/cell to the currently active one.

· Mouse interaction:
When the user clicks using the mouse over a cell/row, the previous selection status will be discarded and only the element being clicked will be selected.

When the user holds SHIFT key and clicks over a cell / row, the previous selection (in the same grid) will be discarded and the new selection will extend from the previously active row/cell to the current one (The same as the SHIFT + Arrow Key keyboard behavior).

When the user holds CTRL key and clicks over a cell / row, only the element being clicked changes the selection status, the status of other elements remains unchanged (the same behavior as for when a user hits the arrow key without holding SHIFT and then selects/deselects row/cell by pressing SPACE key).

Selection Modes comparison table

This is a list of differences in the behavior of the control between Selection modes.

	User Action
	Selection Mode = Inherited
	Selection Mode
 = Single or Multiple Selection

	Clicking item grid column titles (for tree item that has an ItemGrid as a child)
	The item and the Column Titles of the child ItemGrid are both selected.
	Item grid column titles are NOT selected

	Selecting a row in ItemGrid object
	The entire row is selected, including the row title cell.
	The row title cell is NOT selected unless TL_SELOPT_MARKSELECTED_ROWCOLTITLE flag is set in the SelectionOptions property.

Syntax

TList. SelectionMode [= enum%]

Remarks

SelectionMode property's settings are:

	Constant
	Setting
	Description

	TL_SELMODE_INHERITED
	-1
	(Default) The grid object inherits the selection mode from the tree itself (controlled by MultiSelect property).

	TL_SELMODE_SINGLE
	0
	A click or the spacebar key press selects a single row/cell in the grid.

	TL_SELMODE_MULTIPLE
	1
	A click or the spacebar key press selects or deselects a row/cell in the grid.
SHIFT+click or Shift+arrow key extends the selection from the previously activated row/cell to the current one (previous selection gets removed automatically). CTRL+click selects or deselects a row/cell in the grid.

Data Type

Integer

See Also

SelectionOptions property

SelectionOptions Property (TListGrid object)

Description

This property specifies some options that allow user to control the selection process more thoroughly.

Applies to

TListGrid object

Syntax

[TListGrid].SelectionOptions = [enum]
Settings

 The SelectionOptions property is a bit-field valued property set by OR’ing the desired combination of flag values:

	Constant
	Setting
	Description

	TL_SELOPT_SELECTROWS
_ONTITLECLICK
	&H1
	A whole grid row will be selected when user clicks over the corresponding row title.

(Not enabled in Cell by Cell activation mode and selection mode = TL_SELMODE_SINGLE)

	TL_SELOPT_SELECTCOLS
_ONTITLECLICK
	&H2
	A whole grid column will be selected when user clicks over the corresponding column title.

(NOT supported if ActivationMode = Item or Row.

NOT supported unless in multiple selection mode - for Tree and/Or Grid)

	TL_SELOPT_SELECTGRID
_ONCORNERCLICK
	&H4
	A whole grid (all cells) will be selected when user clicks over the corner cell of the grid.

(NOT supported unless in multiple selection mode - for Tree and/Or Grid.)

Selected Property (TListGridCell, TListRowDef and TListColDef objects)

Description

This property returns the current status of the corresponding element (cell, row or column). Read-only. To select cell, row or column add an object to the correspondent collection of TListGrid object (SelectedCells, SelectedRows, SelectedColumns).

Applies to

TListGridCell, TListRowDef, TListColDef objects

Syntax

[boolean] = [TListGridCell].Selected
[boolean] = [TListColDef].Selected
[boolean] = [TListRowDef].Selected
Example

Dim bStatus As Boolean

'Select the 3rd column in the main grid

TList1.Grid.SelectedColumns.Add TList1.Grid.ColDefs(3)

'...

'read back the status of the column

bStatus = TList1.Grid.ColDefs(3).Selected

'...

'Select the cell in Row 2, Column 4

TList1.Grid.SelectedCells.Add TList1.Grid.Cells(2,4)

'...

'read back the status of the cell

bStatus = TList1.Grid.Cells(2,4).Selected
'...

'select row 10 in the main grid

TList1.Grid.SelectedRows.Add TList1.Grid.Rows(10)

'...

'read back the status of the row

bStatus = TList1.Grid.RowDef(10).Selected
Remarks

· A Row is considered selected if all selectable cells in the row are selected (at least one cell in the row should be selectable).

· A Column is considered selected only if all selectable cells in the column are selected (at least one cell in the column should be selectable).

See Also

Selectable property

Activatable Property (TListCellDef object)

Description

This property provides control over the end-user's ability to navigate to any particular item/cell/row using keyboard, mouse or using properties (for example via Activate method for TListGrid object and ListIndex property for the tree). Cells which can not be activated can not receive the focus and will be skipped over when navigating by keyboard and ignored when clicked by mouse.

This property is helpful for specifying non-accessible regions in the grid or tree.

Applies to

TListCellDef object

Syntax

[TListCellDef].Activatable = [enum]
Settings

Settings for the Activatable property are:

	Constant
	Setting
	Description

	TL_ACTIV_INHERITED

(Default)
	-1
	The ability to activate the object is inherited.
A cell's ability to be activated may be inherited from the Row, the Column, the Grid or the entire TList object.

Note – this value is Read-only. Reading the Activatable property always returns either 0 or 1

	TL_ACTIV_DISABLED
	0
	The specified cell(s) can not be activated (can not receive focus). Such cells will be skipped over when navigating by keyboard)

	TL_ACTIV_ENABLE

	1
	The specified cell can be activated regardless of the Activatable property setting for any higher level object to which it belongs.
 For instance; setting Activatable = TL_ACTIVE_ENABLE for a cell will allow that cell to be activated even if the settings for the parent Row, Column or entire Grid are TL_ACTIV_DISABLED

Default Value

By default this property is set to TL_ACTIV_INHERITED for all TListCellDef objects.

Example

'Prevent any cell in the 3rd column from being activated

TList1.Grid.ColDefs(3).CellDef.Activatable = TL_ACTIV_DISABLED
'...

'Prevent the Grid Cell in Row 2, Column 4 from being Activated

TList1.Grid.Cells(2,4).CellDef.Activatable = TL_ACTIV_DISABLED

'...

'make the item with index 100 read-only for navigation

TList1.ItemCell(100).Activatable = TL_ACTIV_DISABLED

Remarks

Use the Selectable property to disable selecting of Activatable elements.

For single-selection mode (MultiSelect property = 0) setting Activatable property to False disables the ability to change the selection as well.

Items, Rows, Cells, …marked as unable to be activated are also prevented from become active as a result of program code. For example, setting ItemCell(11).Activatable = TL_ACTIV_DISABLED prevents TList.ListIndex =11 from having effect.

Selectable Property (TListCellDef object)

Description

The Selectable property provides control over the end-user’s ability to select specific List/Tree items, or Cells, Rows, Columns in a Grid.

This property is helpful for specifying non-selectable regions in the grid or tree.

By default this property set to True for all TListCellDef objects.

Applies to

TListCellDef object

Syntax

[TListCellDef].Selectable = [boolean]
Example

'makes third column in the main grid non-selectable

TList1.Grid.ColDefs(3).CellDef.Selectable = False
'...

'makes the cell with coordinates row=2 column=4 in Item 30’s ItemGrid non-selectable

TList1.ItemGrid(30).Cells(2,4).CellDef.Selectable = False

'...

'makes the item with index 100 non-selectable

TList1.ItemCell(100).Selectable = False

Remarks

Note: Use the Activatable property of theTListCellDef object to control the end-user's ability to navigate to any particular item/cell/row using keyboard, mouse or using properties.

Non-Selectable elements may not be selected by either end-user or program control.

Col and Row Properties (TListGrid object)

Description

These properties return the ordinal number of the active cell/row in the active grid.

Applies to

TListGrid object

Syntax

[long] = [TListGrid].Col
[long] = [TListGrid].Row
Remarks

Use these properties to identify which row or column contains the active cell.

Use the ActiveRow and ActiveCell properties to reference the ActiveRow or Cell.

Columns and rows are numbered from zero, beginning at the RowTitles column as column 0 and the Column Titles row as row 0 (even if the ShowRowTitles and/or ShowColumnTitles properties are false)

Col and Row properties can return –1 value if there is no active cell in the grid (other grid or item is active) or the entire row is selected.
These are Read-Only properties - Use the Activate method to activate a Cell or Row.

Example

Value = TList.Grid.Cells(TList.Grid.Row, TList.Grid.Col).Value

' Is equivalent to

Value = TList.Grid.ActiveCell.Value

ActiveCell Property (TListGrid object)

Description

Returns a reference to active TListGridCell object.

Applies to

TListGrid object

Syntax

[TListGridCell] = [TListGrid].ActiveCell
Remarks

This is a Read-Only property. The Activate method of TListGrid object should be used in order to activate any particular cell/row in some grid.

There will be no ActiveCell in the following cases

 TLGridObject.ActivationMode = TL_ACTIVMODE_ROW

 TLGridObject.GridCellDef.Activation = TL_ACTIV_DISABLED

 (or TList does not have items - only captions)

 Before any cell is activated

 After TList1.ListIndex = -1

 After item that contains active cell was deleted

Example

n'get an active cell and display it value

Dim objCell as TListGridCell

Set objCell = TList1.Grid.ActiveCell
Debug.Print "objCell Value =" & objCell.Value.Value

' Test whether any ActiveCell exists in main grid

If TList.Grid.ActiveCell is Nothing Then ….

' Test whether any ActiveCell exists in a specified TreeGrid

If TList.ItemGrid(30).ActiveCell is Nothing Then ….

ActiveRow Property (TListGrid object)

Description

Returns a reference to the active TListGridRow object.

Applies to

TListGrid object

Syntax

[TListGridRow] = [TListGrid].ActiveRow
Example

'get an active row and display it index

Dim objRow as TListGridRow

Set objRow = TList1.Grid.ActiveRow
Debug.Print "objRow Index =" & objRow.Index

Remarks

This is a Read-Only property - The Activate method of TListGrid object should be used in order to activate any particular cell/row in some grid.

This property always points to the active row even if the grid is in cell-by-cell activation mode (ActivationMode = TL_ACTIVMODE_CELL) and only the cell is visually displayed as active (marked by a focus rectangle).

SelectedCells Property (TListGrid object)

Description

This property returns a reference to a collection of TListGridCell objects that are currently selected.

See TListSelectedGridCells object

Applies to

TListGrid object

Syntax

[TListSelGridCells] = [TListGrid].SelectedCells
SelectedColumns Property (TListGrid object)

Description

This property returns a reference to a collection of TListColDef objects that are currently selected.

See TListSelectedGridColumns object

Applies to

TListGrid object

Syntax

[TListSelGridColumns] = [TListGrid].SelectedColumns
SelectedRows Property (TListGrid object)

Description

This property returns a reference to a collection of TListRowDef objects that are currently selected.

See TListSelectedGridRows object

Applies to

TListGrid object

Syntax

[TListSelGridRows] = [TListGrid].SelectedRows
TListSelectedGridCells object

The TListSelectedGridCells object is a collection that holds a series of TListGridCell objects representing all selected cells in the active grid. The collection items are indexed from according to their position, from Left to Right, Top to Bottom. The collection is returned by the SelectedCells property of the TListGrid object.

Properties

	Property
	Description

	Count \Relate "TList6.doc!547", "Count" \D2HTargetDefault
	Returns the number of objects in the collection - ie: the number of selected cells.

	Item \Relate "TList6.doc!546", "Item" \D2HTargetDefault
	Returns a reference to the item specified by index in the collection. Read-only

	Add \Relate "TList6.doc!548", "Add" \D2HTargetDefault
	Adds new cell to the collection. This is the same as selecting corresponding cell of the active grid object.

	Remove \Relate "TList6.doc!549", "Remove" \D2HTargetDefault
	Removes cell from the collection. This is the same as deselecting corresponding cell of the active grid object.

	Clear \Relate "TList6.doc!550", "Clear" \D2HTargetDefault
	Clears contents of collection. Deselects all cells of the active grid object.

	Grid
	Returns the Grid object this collection belongs to.

Example

Dim objSelectedCells as TListSelectedGridCells

Set objSelectedCells = TList1.Grid.SelectedCells

Dim objCell as TListGridCell

Debug.Print "Selected Cells"

For Each objCell In objSelectedCells

 Debug.Print "objCell =(" & objCell.Row & "," & objCell.Col & ")"

Next

TListSelectedGridColumns object

The TListSelectedGridColumns object is a collection that holds a series of TListColDef objects representing all fully selected columns (where all cells in the column are selected) in the active grid. The collection items are indexed in sequence from the left most selected column to the right most selected column. The collection is returned by the SelectedColumns property of the TListGrid object.

Properties

	Property
	Description

	Count \Relate "TList6.doc!547", "Count" \D2HTargetDefault
	Returns the number of objects in the collection - ie: the number of selected columns.

	Item \Relate "TList6.doc!546", "Item" \D2HTargetDefault
	Returns a reference to the column specified by index in the collection. Read-only

	Add \Relate "TList6.doc!548", "Add" \D2HTargetDefault
	Adds new column to the collection. This is the same as selecting corresponding column of the active grid object.

	Remove \Relate "TList6.doc!549", "Remove" \D2HTargetDefault
	Removes column from the collection. This is the same as deselecting corresponding column of the active grid object.

	Clear \Relate "TList6.doc!550", "Clear" \D2HTargetDefault
	Clears contents of collection. Deselects all columns of the active grid object.

	Grid
	Returns the Grid object this collection belongs to.

Example

Dim objSelectedColumns as TListSelectedGridColumns

Set objSelectedColumns = TList1.Grid.SelectedColumns

Dim objColDef as TListColDef

Debug.Print "Selected Columns"

For Each objColDef In objSelectedColumns

 Debug.Print "ColDef Index =" & objColDef.Index & objColDef.ValueName

Next

TListSelectedGridRows object

The TListSelectedGridRows object is a collection that holds a series of TListRowDef objects representing all fully selected rows (where all cells in the row are selected) in the active grid. The collection items are indexed in sequence from the top to the bottom. The collection is returned by the SelectedRows property of the TListGrid object.

Properties

	Property
	Description

	Count \Relate "TList6.doc!547", "Count" \D2HTargetDefault
	Returns the number of objects in the collection - i.e.: the number of selected rows.

	Item \Relate "TList6.doc!546", "Item" \D2HTargetDefault
	Returns a reference to the row specified by index in the collection. Read-only

	Add \Relate "TList6.doc!548", "Add" \D2HTargetDefault
	Adds new row/item to the collection. This is the same as selecting corresponding row of the active grid object.

	Remove \Relate "TList6.doc!549", "Remove" \D2HTargetDefault
	Removes row from the collection. This is the same as deselecting corresponding row of the active grid object.

	Clear \Relate "TList6.doc!550", "Clear" \D2HTargetDefault
	Clears contents of collection. Deselects all rows of the active grid object.

	Grid
	Returns the Grid object this collection belongs to.

Example

Dim objSelectedRows as TListSelectedGridRows

Set objSelectedRows = TList1.Grid.SelectedRows

Dim objRowDef as TListRowDef

Debug.Print "Selected Rows"

For Each objRowDef In objSelectedRows

 Debug.Print "Row Index =" & objRowDef.Index

Next

RowDefs Property (TListGrid object)

Description

This property returns a reference to a TListRowDef object by specified index. This object represents a particular row in a grid object. See TListRowDef object for details.

Applies to

TListGrid object

Syntax

[TListRowDef] = [TListGrid].RowDef(index&)

TListRowDefs object

The TListRowDefs object is a collection that holds a series of TListRowDef objects representing all rows in the grid. The collection items are indexed in sequence from the top to the bottom. The collection is returned by the RowDefs property of the TListGrid object.

Properties

	Property
	Description

	Count \Relate "TList6.doc!547", "Count" \D2HTargetDefault
	Returns the number of objects in the collection - i.e.: the number of selected rows.

	Item \Relate "TList6.doc!546", "Item" \D2HTargetDefault
	Returns a reference to the row specified by index in the collection. Read-only

Example

Dim objRows as TListRowDefs

Set objRows = TList1.Grid.RowDefs

Dim objRowDef as TListRowDef

Debug.Print "All Grid Rows"

For Each objRowDef In objRows

 Debug.Print "Row Index =" & objRowDef.Index

Next

TListRowDef object

The TListRowDef object represents a row in a TListGrid object. This object provides accesses to get/set information specific for a particular row of the grid object.

Properties

	Property
	Description

	Index \Relate "TList6.doc!547", "Count" \D2HTargetDefault
	Returns the index of this object in the grid. Note: rows in grid are numbered from 0. Read-only.

	CellDef \Relate "TList6.doc!546", "Item" \D2HTargetDefault
	Returns a reference to the TListCellDef object that describes the format and edit settings for this row. Read-only.

	Values \Relate "TList6.doc!548", "Add" \D2HTargetDefault
	Returns a reference to the TListItemValues object that holds named data associated with a TList item.
Note: this is the same data that user can get using TList1.ItemValues() property call specifying as a parameter the index of the item corresponding this row object. Read-only.

	ItemIndex \Relate "TList6.doc!549", "Remove" \D2HTargetDefault
	Returns the index of the item that corresponds this row of the grid object. Note: It is the same as using RowToItemIndex call specifying the row index as a parameter. Read-only

	Selected
	Specifies whether the grid row is selected.

	Row
	Returns the TListGrid object that owns a specified row.

	Grid
	Returns the Grid object this row belongs to.

Example

'deselect all rows in the grid

Call TList1.Grid.SelectedRows.Clear()

'select first, third and fifth rows in the grid

TList1.Grid.RowDef(1).Selected = True

TList1.Grid.RowDef(3).Selected = True

TList1.Grid.RowDef(5).Selected = True

GridCellActivate Event / GridCellDeactivate Event

Description

The GridCellActivate event occurs right after a cell becomes active (having focus), but not necessary selected for multi-selection modes) but before any changes are displayed on the screen.

The GridCellDeactivate event when a cell is being deactivated (losing focus), but before the corresponding changes become visible on the screen.

Syntax

Sub TList_GridCellActivate([Index As Integer], ByVal objGridCell As TListGridCell,
ByVal lReserved As Long)

Sub TList_GridCellDeactivate([Index As Integer], ByVal objGridCell As TListGridCell,
ByVal lReserved As Long)

Parameters

objGridCell -returns a reference to the cell that is activated / deactivated.

lReserved – reserved for this version.

Remarks

The GridCellActivate event won’t be triggered if the cell or set of cells is not enabled for activating (see Activatable property for details). Use the GridCellClick event for trapping clicks over disabled cells.

The ActiveCell, or Row and Col properties are updated after the GridCellDeactivate event, but before the GridCellActivate event. Thus the previously Active Cell can still be referenced via these properties inside the GridCellDeactivate event.

Note: Upon entry to this event objGridCell parameter will be initially set by TList to Nothing if the event was triggered as a result of deleting the corresponding GridCell object.
Example

'- Select / Deselect Grid Cell upon Activation (as user Navigates for instance)

' Normally TList may just show a focus rectangle

Sub TList1_GridCellActivate(ByVal objGridCell As TListProLibCtl.TListGridCell, _

ByVal lReserved As Long)

 objGridCell.Selected = True

End Sub

Sub TList1_GridCellDeactivate(ByVal objGridCell As TListProLibCtl.TListGridCell, _

ByVal lReserved As Long)

 If Not objGridCell Is Nothing Then

 objGridCell.Selected = False

 End If

End Sub

GridRowActivate Event / GridRowDeactivate Event

Description

The GridRowActivate event occurs right after a row becomes active (having focus), but not necessary selected for multi-selection modes) but before any changes are displayed on the screen.

The GridRowDeactivate event occurs when a row is being deactivated (losing focus), but before the corresponding changes become visible on the screen.

Syntax

Sub TList_GridRowActivate([Index As Integer], ByVal objGridRow As TListRowDef,
ByVal lReserved As Long)

Sub TList_GridRowDeactivate([Index As Integer], ByVal objGridRow As TListRowDef,
ByVal lReserved As Long)

Parameters

objGridRow -returns a reference to the row that becomes active or deactivated.

lReserved – reserved for this version.

Remarks

The GridRowActivate event won’t be triggered if the row is not enabled for activating (see Activatable property for details) Use the GridRowClick events for trapping clicks over disabled rows.

The ActiveRow, or Row properties are updated after the GridRowDeactivate event, but before the GridRowActivate event. Thus the previously Active Row can still be referenced via these properties inside the GridRowDeactivate event.

Note: Upon entry to this event the objGridRow parameter will be initially set by TList to Nothing if the event was triggered as a result of deleting the corresponding Row object.
ItemActivate Event / ItemDeactivate Event

Description

The ItemActivate event occurs after an item becomes active (gets the focus)

Syntax

Sub TList_ItemActivate([Index As Integer], ByVal lItemIndex As Integer,
ByVal lReserved As Long)

Sub TList_ItemDeactivate([Index As Integer], ByVal lItemIndex As Integer,
ByVal lReserved As Long)

Parameters

lItemIndex - returns an index of the item that becomes activate.

lReserved – reserved for this version.

Remarks

An activated item is not necessarily selected.

The ItemActivate event won’t be generated if the item is not enabled for activating (see Activatable property for details). The ItemClick or Click events may be used to trap clicks over disabled items.

The ListIndex property is updated after the ItemDeactivate event, but before the ItemActivate event. Thus the previously Active Item can still be referenced using this property inside the ItemDeactivate event.

Note: Upon entry to this event lItemIndex parameter will be initially set by TList to Nothing if the event was triggered as a result of deleting the corresponding item.
GridCellClick Eventxe "GridCellClick event"

xe "Grid"
Description

This event occurs when the user selects a cell (except a Row or Column Title) in any Grid of a TList control by clicking the mouse button.

NEW in TList 7 – SYNTAX CHANGE – This event is no longer triggered when user clicks on a Row Title or Column Title Cell. Instead the GridColumnTitleClick, GridRowTitleClick or GridCornerTitleclick event is triggered.

Syntax

Sub TList_GridCellClick([Index As Integer], ByVal objGridCell As

[image: image1.wmf]TListGridCell, ByVal Button As Integer)

Parameters

ObjGridCell – returns a reference to the TListGridCell object for the clicked cell.

Button – returns an integer identifying which button was pressed. This value is composed of the following bit fields: left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively.

Remarks

Important: The TList.ActiveGrid, Grid.ActiveRow, Grid.Col and Grid.Row properties should not be used within this event – such use may result in unpredicted (and unsupported) behavior.

This event passes GridCell, the reference to a TListGridCell object of the cell, which was clicked. The .Row and .Col properties of the GridCell object can be used to determine which cell was clicked. You can find out what Grid object this cell belongs to using GridCell.Grid property.

Clicking over the cell may not change activation or selection for this cell; both of these actions depend on the values of Selectable, Activatable and ActivationMode properties. If the cell cannot be activated the GridCellActivate event will not be triggered when clicking on the cell.

Example

Sub TList_GridCellClick, ByVal objGridCell As TListGridCell, ByVal Button As Integer)

RowNumber = ObjGridCell.Row

ItemIndex = objGridCell.Grid.RowToItemIndex(RowNumber)

ColumnNumber = ObjGridCell.Col

ColumnName = objGridCell.Grid.Coldefs(ColumnNumber).ValueName

End Sub

See Also

GridRowTitleClick Event, GridColumnTitleClick Event, GridCornerTitleClick Event

GridRowTitleClick Event,
GridColumnTitleClick Event,
GridCornerTitleClick Event

Description

These events occurs when the user clicks a cell in a Title Row or Column in any Grid object in TList.

Syntax

Sub TList_GridRowTitleClick([Index As Integer], ByVal ObjTitleCell As TListGridCell,

[image: image2.wmf] ByVal objGridRow As TListRowDef, ByVal Button As Integer)

Sub TList_GridCornerTitleClick([Index As Integer], ByVal ObjTitleCell As TListGridCell,

ByVal Button As Integer)

Sub TList_GridColumnTitleClick([Index As Integer], ByVal ObjTitleCell As TListGridCell,

[image: image3.wmf] ByVal objGridCol As TListColDef, ByVal Button As Integer)

Parameters

ObjTitleCell – returns a reference to the clicked grid cell object.

ObjGridRow – returns a reference to the cell definition object for the row containing the clicked title cell

ObjGridCol – returns a reference to the cell definition object for the column containing the clicked title cell.

Button – returns an integer identifying which button was pressed. This value is composed of the following bit fields: left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the values 1, 2, and 4, respectively.

Remarks

For any of these events, the Row or Column clicked can be identified by the Row or Col property of the TListGridCell Object passed as a parameter of the event.
Clicking on a Title Cell in a Grid does not generally change the activation state of any Grid Cell.

Important: The TList.ActiveGrid, TList.ActiveRow, Grid.Col and Grid.Row properties should not be used within these event – such use may result in unpredicted (and unsupported) behavior.

Example

' Click on Row Title

Sub TList_GridRowTitleClick(ByVal ObjRowTitleCell As TListGridCell ,
_

 ByVal objGridRow As TListRowDef, ByVal Button As Integer)

RowNumber = ObjGridCell.Row

ItemIndex = objGridCell.Grid.RowToItemIndex(RowNumber)

End Sub

' Click on Column Title

Sub TList_GridColumnTitleClick(ByVal ObjColTitleCell As TListGridCell , _

 ByVal objGridCol As TListColDef, ByVal Button As Integer)

ColumnNumber = ObjGridCell.Col

ColumnName = ObjGridCol.ValueName

End Sub

' Click on Corner Title

Sub TList_GridCornerTitleClick(ByVal ObjCornerTitleCell As TListGridCell , _

 ByVal Button As Integer)

Row = ObjcornerTitleCell.Row

Col = ObjcornerTitleCell.Col

End Sub

SelBorderStyle property (TListCellDef object)

Description

TListCellDef’s SelBorderStyle property determines how borders will be drawn around a cell when it becomes selected.

Syntax

[form.]TListCellDef.SelBorderStyle [= enum%]

Settings

SelBorderStyle property's settings are:

	Constant
	Setting
	Description

	TLBORD_DEFAULT_INV
	-1
	(Default) Perform the default inversion procedure (when the cell is being selected) over the border specified by BorderStyle property.

	TLBORD_NONE
	0
	No border.

	TLBORD_SINGLE
	1
	Single one-pixel border.

	TLBORD_DOUBLE
	2
	2-pixel border.

	TLBORD_INSET
	3
	3-D inset border.

	TLBORD_OUTSET
	4
	3-D outset border.

Example

'set the selected single border style for a particular cell in the grid

TList1.Grid.Cells(5, 7).CellDef.SelBorderStyle = TLBORD_SINGLE

'set the selected double border style for a particular cell in the ItemGrid belonging to item 30

TList1.ItemGrid(30).Cells(5, 7).CellDef.SelBorderStyle = TLBORD_DOUBLE

'set the selected double border style for a particular cell in the ItemGrid belonging to item 30

TList1.ItemCell(30). SelBorderStyle = TLBORD_INSET

Data Type

Integer

SelBorderColor property (TListCellDef object)

Applies To

TListCellDef \Relate "TList6.doc!365", "TListCellDef" \D2HTargetDefault object

Description

Determines the default border color displayed around a cell when it becomes selected.

Syntax

TListCellDef.SelBorderColor[= color&] - sets selected border color for a specific cell.

Remarks

This property value will be ignored when SelBorderStyle = TLBORD_DEFAULT_INV.

Example

'set the selected border color for a particular cell in the grid

TList1.
Grid.Cells(5, 7).CellDef.SelBorderColor = RGB(255, 0, 0)

Data Type

Long

FocusRectStyle property (TList object)

Description

FocusRectStyle property determines how focus rectangle will be drawn around items in the tree.

Note: for grid objects the focus rectangle is determined automatically accordingly to ActivationMode property, it will be drawn around the whole row area in case of row mode, around the cell area otherwise.

Note: Prior to TList 7 this behavior was determined by the InvStyle property.

Syntax

TList.FocusRectStyle [= enum%]

Settings

FocusRectStyle property's settings are:

	Constant
	Setting
	Description

	TL_FOCUS_AROUND_ITEM_CELL
	1
	The focus rectangle is drawn around the text and picture (if exists) of the item.

	TL_FOCUS_WHOLE_ITEM
	0
	(Default) The focus rectangle is drawn around the whole object area.

Outside a Grid the object area is the entire width of the item.

Within a Grid the object area may be a single cell or a complete row depending on the setting of the ActivationMode property.

Data Type

Integer

DragColumnsEnabled property (TListGrid object)

Description

The DragColumnsEnabled property enables or disables the end-user ability to drag columns of a grid with the mouse. When enabled the user can click and drag on a grid column header to drag the data from one column to another.

Syntax

TList.GridObject.DragColumnsEnabled [= bool%]

Example

' Enable Column Dragging for TList Grid

 TList1.Grid.DragColumnsEnabled = True

' Enable Column Dragging within a TList ItemGrid

 TList1.ItemGrid(1).DragColumnsEnabled = True

TList1.Grid.DragColumnsEnabled = True

Data Type

Boolean

Remarks

Note: the column can be moved only inside the grid object it belongs to.

OLEDragMode property (TList object)

Description

Specifies whether TList itself or the programmer manually handles an OLE drag/drop operation. When automatic mode is ON, TList performs automatic data copying/paste operation (see OLEDropMode property for details).

Syntax

TList.OLEDragMode [= enum%]

Settings

The settings for OLEDragMode are:

	Constant
	Setting
	Description

	TLOLEDRAG_MANUAL
	0
	(Default) Manual.
The programmer handles all OLE drag/drop operations.

	TLOLEDRAG_AUTOMATIC
	1
	Automatic.
The component handles all OLE drag/drop operations, copies data into internal buffer and performs copying operation specifies by OLEDropMode property.

Data Type

Enumeration

Remarks

When OLEDragMode is set to Manual, you must call the OLEDrag method to start dragging, which then triggers the OLEStartDrag event.

When OLEDragMode is set to Automatic, TList fills the DataObject object with the data it contains and sets the effects parameter before initiating the OLEStartDrag event (as well as the OLESetData and other source-level OLE drag/drop events) when the user attempts to drag out of the control. This gives you control over the drag/drop operation and allows you to intercede by adding other formats, or by overriding or disabling the automatic data and formats using the Clear or SetData methods.

If the source's OLEDragMode property is set to Automatic, and no data is loaded in the OLEStartDrag event, or aftereffects is set to 0, then the OLE drag/drop operation does not occur.

Note: If the DragMode property of a control is set to Automatic, the setting of OLEDragMode is ignored, because regular Visual Basic drag and drop events take precedence over OLE Drag Drop events.

OLEDropMode property (TList object)

Description

Specifies how a target TList component handles drop operations.

When automatic mode is on TList performs automatic data copying/paste operation (see OLEDropMode property for details).

This property determines how source items will be dropped (as child or as sibling) when using the automatic drag/drop mechanisms.

Syntax

TList.OLEDropMode [= enum%]

Settings

The settings for OLEDropMode are:

	Constant
	Setting
	Description

	TLOLEDROPMODE_NONE
	0
	(Default) None.
The target component does not accept OLE drops and displays the No Drop cursor.

	TLOLEDROPMODE_MANUAL
	1
	Manual.
The target component triggers the OLE drop events, allowing the programmer to handle the OLE drop operation in code.

	TLOLEDROPMODE_AUTO_CHILD
	2
	Automatic – copy data (item/cell/row) as child object of the target pointed by mouse cursor.
The target component automatically accepts OLE drops if the DataObject object contains data in a format it recognizes (TList’s format – data should be copied automatically via using OLEDragMode property).

	TLOLEDROPMODE_AUTO_BEFORE
	4
	Automatic – copy data (item/cell/row) BEFORE target object pointed by mouse cursor.
The target component automatically accepts OLE drops if the DataObject object contains data in a format it recognizes (TList’s format – data should be copied automatically via using OLEDragMode property).

	TLOLEDROPMODE_AUTO_AFTER
	8
	Automatic – copy data (item/cell/row) AFTER target object pointed by mouse cursor.
The target component automatically accepts OLE drops if the DataObject object contains data in a format it recognizes (TList’s format – data should be copied automatically via using OLEDragMode property).

Data Type

Enumeration

Remarks

In order to use automatic OLE drag/drop functionality both OLEDragMode and OLEDropMode properties should be used for data source and data target TList components respectively.

OLEDrag method (TList object)

Description

Causes TList to initiate an OLE drag/drop operation.

Syntax

Call TList.OLEDrag()
Remarks

When the OLEDrag method is called, the TList's OLEStartDrag event occurs, allowing it to supply data to a target component.

OLEGiveFeedback event (TList object)

Description

Occurs after every OLEDragOver event. OLEGiveFeedback allows the source TList component to provide visual feedback to the user, such as changing the mouse cursor to indicate what will happen if the user drops the object, or provide visual feedback on the selection (in the source component) to indicate what will happen.

Syntax

Private Sub TList_OLEGiveFeedback(effect As Long, defaultcursors As Boolean)

Parameters

Effect - A long integer set by the target component in the OLEDragOver event specifying the action to be performed if the user drops the selection on it. This allows the source to take the appropriate action (such as giving visual feedback). The possible values are listed in Settings.

DefaultCursors - A boolean value which determines whether Visual Basic uses the default mouse cursor provided by the component, or uses a user-defined mouse cursor.
 True (default) = use default mouse cursor.
 False = Use cursor set by Screen.MousePointer object.

Settings

The settings for Effect parameter are:

	Constant
	Setting
	Description

	DropEffectNone
	0
	Drop target cannot accept the data.

	DropEffectCopy
	1
	Drop results in a copy of data from the source to the target. The original data is unaltered by the drag operation

	DropEffectMove
	2
	Drop results in data being moved from drag source to drop source. The drag source should remove the data from itself after the move

	DropEffectScroll
	(&H80000000)
	Scrolling is occurring or about to occur in the target component. This value is used in conjunction with the other values.

Note Use only if you are performing your own scrolling in the target component.

Remarks

If there is no code in the OLEGiveFeedback event, or if the DefaultCursors parameter is set to True, then Visual Basic automatically sets the mouse cursor to the default cursor provided by the component.

The source component should always mask values from the effect parameter to ensure compatibility with future implementations of components. Presently, only three of the 32 bits in the effect parameter are used. In future versions of Visual Basic, however, these other bits may be used. Therefore, as a precaution against future problems, drag sources and drop targets should mask these values appropriately before performing any comparisons.

For example, a source component should not compare an effect against, for example, mskDropEffectCopy, such as:

If Effect = mskDropEffectCopy...

Instead, the source component should mask for the value or values being sought, as here:

If Effect And mskDropEffectCopy = mskDropEffectCopy...

-or-

If (Effect And mskDropEffectCopy)...

This allows for the definition of new drop effects in future versions of Visual Basic while preserving backwards compatibility with your existing code.

Most components support manual OLE drag and drop events, and some support automatic OLE drag and drop events.

 In order to use automatic OLE drag/drop functionality both OLEDragMode and OLEDropMode properties should be used for data source and data target TList components respectively.

OLEStartDrag event (TList object)

Description

Occurs when a component's OLEDrag method is performed, or when a component initiates an OLE drag/drop operation when the OLEDragMode property is set to Automatic.
This event specifies the data formats and drop effects that the source component supports. It can also be used to insert data into the DataObject object.

Syntax

Private Sub TList_OLEStartDrag(data As TListDataObject, allowedeffects As Long)

Parameters

Data - A TListDataObject object containing formats that the source will provide and, optionally, the data for those formats. If no data is contained in the TListDataObject, it is provided when the control calls the GetData method, and you should provide the values for the data parameter. The SetData and Clear methods cannot be used here.

AllowedEffects - A long integer containing the effects that the source component supports. The possible values are listed in Settings

Settings

The settings for allowedeffects parameter are:

	Constant
	Setting
	Description

	DropEffectNone
	0
	Drop target cannot accept the data.

	DropEffectCopy
	1
	Drop results in a copy of data from the source to the target. The original data is unaltered by the drag operation.

	DropEffectMove
	2
	Drop results in data being moved from drag source to drop source. The drag source should remove the data from itself after the move.

Remarks

The source component should logically Or together the supported values and place the result in the allowedeffects parameter. The target component can use this value to determine the appropriate action, and what the appropriate user feedback should be.

The StartDrag event also occurs if the component's OLEDragMode property is set to one of automatic modes. This allows you to add formats and data to the TListDataObject object after the component has done so. You can also override the default behavior of the component by clearing the TListDataObject object (using the Clear method) and then adding your data and formats.

You may want to defer placing data into the TListDataObject object until the target component requests it. This allows the source component to save time by not loading multiple data formats. When the target performs the GetData method on the TListDataObject, the source's OLESetData event will occur if the requested data is not contained in the TListDataObject. At this point, the data can be loaded into the TListDataObject, which will in turn provide the data to the target.

If the user does not load any formats into the TListDataObject, then the drag/drop operation is canceled.

OLESetData event (TList object)

Description

Occurs on a source component when a target component performs the GetData method on the source's TListDataObject object, but before the data for the specified format has been loaded

Syntax

Private Sub TList_OLESetData (data As TListDataObject, dataformat As Integer)

Parameters

Data - A TListDataObject object in which to place the requested data. The component calls the SetData method to load the requested format

DataFormats - An integer specifying the format of the data that the target component is requesting. The source component uses this value to determine what to load into the TListDataObject object.

Remarks

In certain cases, you may want to defer loading data into the TListDataObject object of a source component to save time, especially if the source component supports many formats. This event allows the source to respond to only one request for a given format of data. When this event is called, the source should check the format parameter to determine what needs to be loaded and then perform the SetData method on the TListDataObject object to load the data, which is then passed back to the target component.

OLECompleteDrag event (TList object)

Description

Occurs when a source component is dropped onto a target component, informing the source component that a drag action was either performed or canceled.

Syntax

Private Sub TList_ OLECompleteDrag([effect As Long])

Parameters

Effect - A long integer set by the source object identifying the action that has been performed, thus allowing the source to take appropriate action if the component was moved (such as the source deleting data if it is moved from one component to another). The possible values are listed in Settings.

Settings

The settings for Effect parameter are:

	Constant
	Setting
	Description

	DropEffectNone
	0
	Drop target cannot accept the data, or the drop operation was canceled.

	DropEffectCopy
	1
	Drop results in a copy of data from the source to the target. The original data is unaltered by the drag operation.

	DropEffectMove
	2
	Drop results in data being moved from the drag source to the drop source. The drag source should remove the data from itself after the move.

Remarks

The OLECompleteDrag event is the final event to be called in an OLE drag/drop operation. This event informs the source component of the action that was performed when the object was dropped onto the target component. The target sets this value through the effect parameter of the OLEDragDrop event. Based on this, the source can then determine the appropriate action it needs to take. For example, if the object was moved into the target (DropEffectMove), the source needs to delete the object from itself after the move.

If OLEDragMode is set to one of automatic modes, then TList handles the default behavior. The event still occurs, however, allowing the user to add to or change the behavior.

ScrollHPosition property (TList object)

Description

ScrollHPosition property specifies TList's horizontal scroll position in pixels.

Syntax

TList.ScrollHPosition [= pixels]

Valid Range

 0 < = .ScrollHPosition < = .ScrollHRange

Data Type

Long

Remarks

To scroll horizontally by some percentage use the ScrollHorz property

See Also

ScrollHPosition property. ScrollHorz property

ScrollHRange property (TList object)

Description

ScrollHRange property returns the maximum range of horizontal scrolling in pixels – ie: the maximum value to which the ScrollHPosition property may be set.

Read-only.

Syntax

[pixels] = TList.ScrollHRange
Data Type

Long

See Also

ScrollHPosition property. ScrollHorz property

ScrollVPosition property (TList object)

Description

The ScrollVPosition property specifies the Vertical Scroll position of TList measured in visible items.

Only Visible Items (items not collapsed, and not identified as Hidden or of 0 height) are counted.

Syntax

TList.ScrollVPosition [= Nth Visible Item]

Valid Range

 0 < = .ScrollVPosition < = .ScrollVRange

Data Type

Long

Remarks

To scroll to a specific item using it's ItemIndex (counting all items rather than counting just visible items) use the TopIndex property.
See Also

ScrollVRange property, TopIndex property

ScrollVRange property (TList object)

Description

ScrollVPosition property returns the maximum range of Vertical scrolling– ie: the maximum value to which the ScrollVPosition property may be set.

Note: scrolling range is measured in items.

Read-only.

Syntax

[items] = TList ScrollVRange
Data Type

Long

See Also

ScrollVPosition property, TopIndex property

Font3D property (TListCellDef object)

Description

The Font3D property controls the presentation of either standard or 3-D text appearance in TList.

Use of 3-D shadowed fonts can be helpful in display of text over a background image in TList.

3-D fonts may be set for the entire TList control or for any column, row, or specific cell (depending on the TList CellDef object this property applied to).

Syntax

TListCellDefObject.Font3D = [enum]

Settings

Font3D property's settings are:

	Constant
	Setting
	Description

	TL_FONT3D_NONE
	0
	(Default) Normal text.

	TL_FONT3D_INSET
	1
	Inset text.

	TL_FONT3D_RAISED
	2
	Raised Text.

Example

'specify 3D appearance for all items in TList Tree or List

TList1.DefItemCellDef.Font3D = TL_FONT3D_RAISED

'specify 3D appearance for all items in TList Grid

tlist1.Grid.GridCellDef.Font3D = TL_FONT3D_INSET

'specify 3D appearance for a specific List or Tree item

TList1.ItemCell(1).Font3D =TL_FONT3D_INSET

'specify 2-D appearance for a specific Grid Cell

TList1.Grid.Cells(0,1).CellDef.Font3D = TL_FONT3D_NONE

Data Type

Enumeration

Remarks

Note: 3-D appearance is achieved using "shadows". A second presentation of the text is drawn offset both above and to left, or below and to right in a secondary shadow color depending on whether text is to appear raised or lowered. For non-standard shadow color use FontShadowColor, FontShadowSelectedColor properties. FontShadowColor and FontShadowSelected Color determine the color of the shadow for 3D text for normal and selected items.
Changing Font3D property alters FontShadowColor, FontShadowSelectedColor properties.

See Also

FontShadowColor, FontShadowSelectedColor properties.

FontShadowColor and FontShadowSelectedColor properties (TListCellDef object)

Description

The FontShadowColor and FontShadowSelectedColor properties determine the shadow colors used to present 3D text for normal and selected items/cells/rows/columns.

This effect may be applied to the entire TList control or for any column, row, or specific cell (depending on the TList CellDef object this property applied to).

Syntax

TListCellDefObject.FontShadowColor = [color]

TListCellDefObject.FontShadowSelectedColor = [color]

Example

'specify 3D appearance with non-standard colors for all List / Tree items (also first column of Grid)

TList1.DefItemCellDef.FontShadowColor = RGB(128, 192, 192)

TList1.DefItemCellDef.FontShadowSelectedColor = RGB(192, 128, 128)

Data Type

Color

Remarks

Note: 3-D appearance is achieved using "shadows". A second presentation of the text is drawn offset both above and to left, or below and to right in a secondary shadow color depending on whether text is to appear raised or lowered. See also Font3D property.

TreeLinesStyle Property xe "TreeLinesStyle property"

xe "Display"

xe "TreeLinesStyle property"
Description

Setting the TreeLinesStyle property determines how tree lines are drawn.

Syntax

 [form.]TList.TreeLinesStyle [= enum%]

Settings

The TreeLinesStyle property settings are:

	Constant
	Setting
	Description

	TLTREEL_SOLID
	0
	(Default) Solid lines.

	TLTREEL_DASH
	1
	Dash lines.

	TLTREEL_DOT
	2
	Dotted lines.

	TLTREEL_DASHDOT
	3
	Dash-dot lines

	TLTREEL_DASHDOTDOT
	4
	Dash-dot-dot lines

	TLTREEL_3DINSET_2COLOR
	5
	3D-Inset using 2 colors.
TList uses Windows settings for specification of shadow and highlight color for 3D tree lines.

	TLTREEL_3DRAISED_2COLOR
	6
	3D-Raised using 2 colors.
TList uses Windows settings for specification of shadow and highlight color for 3D tree lines.

	TLTREEL_3DINSET_3COLOR
	7
	3D-Inset using 3 colors.
TList uses Windows settings to for specification of shadow and highlight color for 3D tree lines.

	TLTREEL_3DRAISED_3COLOR
	8
	3D-Raised using 3 colors.
TList uses Windows settings for specification of shadow and highlight color for 3D tree lines.

	TLTREEL_3D_USER_COLORS
	9
	3D-User-defined
Shadow and highlight colors specified by TreeLinesHighlightColor and TreeLinesShadowColor properties

	TLTREEL_3D_AUTO_COLORS
	10
	3D-Calculated Colors.
TList automatically calculates TreeLinesHighlightColor and TreeLinesShadowColor colors based on current TreeLinesColor property.

TreeLinesColor, TreeLinesHighlightColor and TreeLinesShadowColor properties (TList object)

Description

The TreeLinesColor property determines the base color used to draw tree lines within TList.

TreeLinesHighlightColor and TreeLinesShadowColor properties specify highlight and shadow colors used for 3-D tree lines when TreeLinesStyle property is set to TLTREEL_3D_USER_COLORS.

TreeLinesHighlightColor and TreeLinesShadowColor properties return values dependant on TreeLinesStyle property.

Syntax

TList.TreeLinesColor = [color]

TList.TreeLinesHighlightColor = [color]

TList.TreeLinesShadowColor = [color]

Data Type

Color / Long

Remarks

Setting of TreeLinesColor property updates control display unless the Redraw property is set to False.

Setting either TreeLinesHighlightColor or TreeLinesShadowColor automatically sets the TreeLinesStyle property to TLTREEL_3D_USER_COLORS.

Note: Either TreeLinesHighlightColor or TreeLinesShadowColor can be set to transparent. This allows drawing 3D TreeLines with 2 colors.

See Also

TreeLinesStyle property

AutoFillColTitles and AutoFillRowTitles Properties xe "Grid"

xe "TListGrid object"

xe "AutoFillColTitles property"

xe "AutoFillRowTitles property"
Applies To

TListGrid object

Description

The setting of the AutoFill… properties determines what default text will be shown in Grid column titles (AutoFillColTitles property) and row titles (AutoFillRowTitles property).

NEW in TList 7 – NEW FEATURE – The AutoFillRowTitles now supports Automatic Hierarchic Numbering.

Syntax

[form.]TList.Grid.AutoFillColTitles [= enum%]

 [form.]TList.Grid.AutoFillRowTitles [= enum%]

Settings

The AutoFillColTitles and AutoFillRowTitles properties settings are:

	Setting
	
	Description

	0
	TL_FILL_ROW_TITLES_NONE
or TL_FILL_COL_TITLES_NONE
	None.

	1
	TL_FILL_ROW_TITLES_NUMBERS

 or TL_FILL_COL_TITLES_NUMBERS
	Numbers. (Default for AutoFillRowTitles). TList will automatically number rows or columns starting with 1, 2, 3. .

	2
	TL_FILL_ROW_TITLES_CHARACTERS

or TL_FILL_COL_TITLES_CHARACTERS
	Characters. (Default for AutoFillColTitles). TList will automatically label rows or columns alphabetically(A, B, C … AA, AB, etc.) (The English alphabet is used regardless of Windows language settings).

	3
	TL_FILL_ROW_TITLES_HIERARCHIC

	Hierararchic. TList will automatically label rows in a Tree structure to reflect the hierarchic structure.
1, 1.1, 1.2, 1.2.1, 1.2.2, 1.3, ….

Data Type

Integer

Example

 ' Set up TList as 2 Column Grid to show Automatic Outline Numbering in Row Titles
 ' and Text in 2nd Column

 TList1.Grid.Cols = 2

 TList1.Grid.AutoFillRowTitles =TL_FILL_ROW_TITLES_HIERARCHIC

ItemSorted, ItemSortingMethod, ItemSortingStyle, and ItemSortingKey Propertiesxe "Sorting"

xe "ItemSortingKey property"

xe "ItemSortingStyle property"

xe "ItemSortingMethod property"

xe "ItemSorted property"
Description

These properties specify how TList sorts root items or a specified branch of the tree.

 The Itemsorted property initiates, halts or resets the sorting.

 The ItemSortingMethod property specifies ascending or descending sort order.

 The ItemSortingStyle property provides additional control such as Numeric or Case Sensitive Sorting.

 The ItemSortingKey property specifies what data (visible text or hidden ItemValues) should be used as the key for the sorting.

NEW in TList 7 – SYNTAX CHANGE: ItemSorted has been changed to a Enumeration value.

NEW in TList 7 – SYNTAX CHANGE: An empty or unassigned ItemSortingKey value previously indicated sorting by the old (obsolete) ItemXXXvalue properties. In TList 7, an empty or unassigned ItemSortingKey indicates sorting by the visible text. To sort by an ItemXXXValue property set the ItemSortingKey to "__ObsoleteValue"
NEW in TList 7 – NEW PROPERTY : ItemSortingMethod introduced to specify Ascending or Descending Sort Order

NEW in TList 7 – NEW FEATURE: Data may be sorted by a prioritized list of Multiple Columns or ValueNames, each with it's own Sorting Style.

Syntax

TList.ItemSorted(ByVal ParentIndex as Long)[= enum%]

TList.ItemSortingMethod(ByVal ParentIndex as Long,
ByVal SortPriority as Variant)[= enum%]

TList.ItemSortingStyle(ByVal ParentIndex as Long,
ByVal SortPriority as Variant)[= settings%]

TList.ItemSortingKey(ByVal ParentIndex as Long,
ByVal SortPriority as Variant) [= ValueName$]

Parameters

 ParentIndex –Index value pointing to parent of the items to be sorted.

 To sort roots, set ParentIndex to -1

 SortPriority – (default 0) – identifies sort priority for the specified ValueName
Multiple sorting styles, sorting keys and sorting methods may be specified. TList will sort data first according to specification of ItemSortingMethod, ItemSortingKey, and ItemSortingStyle having parameter SortPriority = 0, followed the sort criteria data having SortPriority 1, 2, 3, …

Settings

The ItemSorted property settings are

	Setting
	Constant
	Description

	0
	TLSORTSTATE_OFF
	(Default) Sort OFF – Sorting is off. Additions or modifications to data in TList will not affect the order of the list, nor will changes to the sort properties.

	1
	TLSORTSTATE_ON
	Sort On – Sorting is On. When first set TList performs an immediate sorting using current sort settings. Any changes to data or to sorting properties will immediately be reflected in a new sorting order.

	2
	TLSORTSTATE_RESET
	Reset – Reset the sorting state – all sorting settings for a specific branch will be removed, and ItemSorted will be automatically set back to 0

The ItemSortingMethod property settings are:

	Setting
	Constant
	Description

	0
	TLSORT_ASCENDING
	(Default) Sort items in the ascending order.

	1
	TLSORT_DESCENDING
	Sort items in the descending order.

The ItemSortingKey property is a Variant which should be either Empty (""), or a any ValueName for which ItemValues have been assigned to TList.

If ItemSortingKey is Empty(""), sorting will be based on the Visible Text held within TList (or for grid objects if there are multiple columns then on the default column of TList - the column holding the main Tree / List data).

If ItemSortingKey contains a valid ItemValue name or numeric column index for grid objects, sorting will be based on the ItemValues referenced by the ValueName or held in the Grid Column (Grid.Coldef object) named by that ValueName.

If ItemSortingKey contains the special value "__ObsoleteValue", TList will sort by the data held in the old ItemXXXvalue properties (ItemStrValue, ItemIntValue…).
Sorting may be performed on multiple columns in prioritized fashion by specifying multiple ItemSortingKeys, each with a SortPriority parameter.

The ItemSortingStyle property should be set as the sum of the desired Bit Flag values from the following table:

	Constant
	Value
	Description

	TL_SORT_IGNORE_CASE
	&H1
	If set, ignore case while sorting.

	TL_SORT_NUMBERS_SORT
	&H2
	If set, treat string representation of numbers as numbers. "10" comes after "2"

	TL_SORT_STRING_SORT
	&H4
	If set, treat punctuation the same as symbols

	TL_SORT_GROUP_ATTOP
	&H8
	If set, TList groups all items which have children at the top of the sorted sub-tree.
Note: This Flag is processed by TList only for settings of ItemSortingStyle with 2nd parameter (SortPriority) = 0

	TL_SORT_GROUP_ATBOTTOM
	&H10
	If set, TList groups all items which have children at the bottom of the sorted branch.

Note: This Flag is processed by TList only for settings of ItemSortingStyle with 2nd parameter (SortPriority) = 0

	TL_SORT_IGNORE_KANATYPE
	&H20
	Do not differentiate between Hiragana and Katakana characters. Corresponding

Hiragana and Katakana characters compare as equal.

	TL_SORT_IGNORE_NONSPACE
	&H40
	Ignore non-spacing characters

	TL_SORT_IGNORE_SYMBOLS
	&H80
	Ignore symbols.

	TL_SORT_IGNORE_WIDTH
	&H100
	Do not differentiate between a single-byte character and the same character

as a double-byte character.

	TL_SORT_FLOAT_NUMS_SORT
	&H200
	Apply for sorting of Floating point numbers.

Takes fractional part of number into account when sorting.

Note: Bit Flag values, TL_SORT_GROUP_ATTOP and TL_SORT_GROUP_ATBOTTOM may not be applied together.

Tips:

a) To sort all items in a flat List or Grid, or to sort the root items of a Tree,
specify a parent index of –1 for the ItemSorted property,
or set the .Sorted property of Leveldefs(0) object.

b) To fully sort the entire data set, set the ItemSorted property for each item which has children,
or set the Sorted property of each LevelDef object.

c) When working with a Grid, sorting may be controlled using the SortingKey, SortingMethod, SortingStyle, and Sorted properties.

Data Type

ItemSorted – Enum Integer

ItemSortingKey - String

ItemSortingMethod – Enum Integer

ItemSortingStyle –Integer

Example

1) SORT ROOT ITEMS BY VISIBLE TEXT
' – Ignore Case, keep items with children at the top

 ' Identify branch to sort

 ParentIndex = -1 ' special index of –1 refers to parent of full data set

 ' Reset Sort Criteria and Turn off Sorting until new Criteria Set

 TList1.ItemSorted(ParentIndex) = TLSORTSTATE_RESET

 ' Specify Sort Criteria

 TList1.ItemSortingKey (ParentIndex) = "" ' not required, it is default

 TList1.ItemSortingMethod (ParentIndex) = TLSORT_ASCENDING

 TList1.ItemSortingStyle (ParentIndex)= TL_SORT_IGNORE_CASE _

 + TL_SORT_GROUP_ATTOP

 ' Sort Now

 TList1.ItemSorted(ParentIndex) = TLSORTSTATE_ON

2) SPECIFY SORTING OF BRANCH – BY VISIBLE TEXT AND THEN BY HIDDEN NUMERIC DATA

 TList1.ParentIndex = 12 ' – will sort subitems in branch of 12th root

 TList1.ItemSorted (ParentIndex) = TLSORTSTATE_RESET

 ' Specify First Sort Priority

 TList1.ItemSortingKey (ParentIndex,0) = "" ' not required, it is default

 TList1.ItemSortingMethod (ParentIndex,0) = TLSORT_ASCENDING

 TList1.ItemSortingStyle (ParentIndex,0) = TL_SORT_IGNORE_CASE

 ' Specify Second Sort Priority

 TList1.SortingKey (ParentIndex,1) = "SSNumber" ' item value points at num data

 TList1.SortingMethod (ParentIndex,1) = TLSORT_ASCENDING

 TList1.SortingStyle (ParentIndex,1) = TL_SORT_NUMBERS_SORT

 TList1.ItemSorted(ParentIndex) = TLSORTSTATE_ON

3) SORT CHILDREN OF 1st ROOT OF TREE

 BY THE DATA ASSIGNED TO VALUENAME "SS NUMBER"

TList1.ItemSorted(0) = TLSORTSTATE_RESET
TList1.ItemSortingMethod (0,0) = TLSORT_ASCENDING

TList.ItemSortingKey(0, 0) = "SS Number"

TList.ItemSorted(0) = TLSORTSTATE_ON

4) SORT ROOT ITEMS BY VISIBLE DATA FIRST,
 THEN BY A VALUE NAME "FIRST NAME"

 AND FINALLY BY A VALUE NAME "LAST NAME"

TList.ItemSorted(-1) = TLSORTSTATE_RESET

TList.ItemSortingMethod (1,0) = TLSORT_ASCENDING

TList.ItemSortingKey(-1, 0) = "__Tree"

TList.ItemSortingKey(-1, 1) = "First Names"

TList.ItemSortingKey(-1, 2) = "Last Names"

TList.ItemSorted(-1) = TLSORTSTATE_ON

===================================

See Also

Sorted property, SortingStyle property, SortingKey property, SortingMethod property

Sorted, SortingMethod, SortingStyle, and SortingKey Propertiesxe "Sorting"

xe "SortingKey property"

xe "SortingStyle property"

xe "SortingMethod propertty"

xe "Grid"

xe "TListGrid object"

xe "TListLevelDef object"

xe "TListNode Object"

xe "Sorted property"
Applies To

TListGrid object

TListLevelDef object

TListNode object

Description

These properties provide control over the sorting applied to a Grid, a Heirarchic Level, or children of a Node object.

The sorted property initiates, halts or resets the sorting.

The SortingMethod property specifies ascending or descending sort order.

The SortingStyle property provides additional control such as Numeric or Case Sensitive Sorting.

The SortingKey property specifies which column(s) should be used as the key for the sorting.

NEW in TList 7 – SYNTAX CHANGE – The Values assigned to the Sorted property have been changed

NEW in TList 7 – SYNTAX CHANGE – The value –1 for SortingMethod is no longer supported

NEW in TList 7 – SYNTAX CHANGE: An empty or unassigned ItemSortingKey value previously indicated sorting by the old (obsolete) ItemXXXvalue properties. In TList 7, an empty or unassigned ItemSortingKey indicates sorting by the visible text. To sort by an ItemXXXValue property set the SortingKey to "__ObsoleteValue"
NEW in TList 7 – NEW FEATURE – Note that an item may be sorted by a prioritized list of multiple Columns or ValueNames, each with it's own Sorting Style.

Syntax

TListGridObject.Sorted [= Enum%]

TListGridObject.SortingMethod [(SortPriority)] [= enum%]

TListGridObject.SortingKey [(SortPriority)] [= ValueName$]

TListGridObject.SortingStyle [(SortPriority)] [= settings&]

[form.]TList.Grid.Sorted [= bool%]

[form.]TList.Grid.SortingMethod [(SortPriority)] [= enum %]

[form.]TList.Grid.SortingKey [(SortPriority)] [= ValueName$]

[form.]TList.Grid.SortingStyle [(SortPriority)] [= settings&]

[form.]TList.ItemGrid(ItemIndex&).Sorted [= bool%]

[form.]TList.ItemGrid(ItemIndex&).SortingMethod [(SortPriority)] [= enum %]

[form.]TList.ItemGrid(ItemIndex&).SortingKey [(SortPriority)] [= ValueName$]

[form.]TList.ItemGrid(ItemIndex&).SortingStyle [(SortPriority)] [= settings&]

TListLevelDefs(level&).Sorted [= bool%]

TListLevelDefs(level&).SortingMethod [(SortPriority)] [= enum %]

TListLevelDefs(level&).SortingKey [(SortPriority)] [= ValueName$]

TListLevelDefs(level&).SortingStyle [(SortPriority)] [= settings&]

TListNodeObject.Sorted [= Enum%]

TListNodeObject.SortingMethod [(SortPriority)] [= enum%]

TListNodeObject.SortingKey [(SortPriority)] [= ValueName$]

TListNodeObject.SortingStyle [(SortPriority)] [= settings&]

[form].Node(ByVal ItemIndex as Long).Sorted [= Enum%]

[form].Node(ByVal ItemIndex as Long).SortingMethod [(SortPriority)] [= enum%]

[form].Node(ByVal ItemIndex as Long).SortingKey [(SortPriority)] [= ValueName$]

[form].Node(ByVal ItemIndex as Long).SortingStyle [(SortPriority)] [= settings&]

Settings

The Sorted property settings are

	Setting
	Constant
	Description

	0
	TLSORTSTATE_OFF
	(Default) Sort OFF – Sorting is off. Additions or modifications to data in TList will not affect the order of the list, nor will changes to the sort properties.

	1
	TLSORTSTATE_ON
	Sort On – Sorting is On. When first set TList performs an immediate sorting using current sort settings. Any changes to data or to sorting properties will immediately be reflected in a new sorting order.

	2
	TLSORTSTATE_RESET
	Reset – Reset the sorting state – all sorting settings for a specific grid, node or LevelDef will be removed, and Sorted will be automatically set back to TLSORTSTATE_OFF

The SortingMethod property settings are:

	Setting
	Constant
	Description

	0
	TLSORT_ASCENDING
	(Default) Sort items in the ascending order.

	1
	TLSORT_DESCENDING
	Sort items in the descending order.

The SortingKey property is a Variant which should be either Empty, a valid numeric column index, or a valid ValueName.

If SortingKey is Empty, sorting will be based on the default column of TList (the column holding the main Tree / List data).

If SortingKey contains a valid ValueName or numeric column index, sorting will be based on the ItemValues referenced by the ValueName or held in the Grid Column (Grid.Coldef object) pointed by column index.

SortingKey may be set to any Value Name for which ItemValues have been assigned to TList.

If SortingKey contains the special value "__ObsoleteValue", TList will sort by the data held in the old ItemXXXvalue properties (ItemStrValue, ItemIntValue…).
Sorting may be performed on multiple columns in prioritized fashion by specifying multiple SortingKeys, each with a SortPriority parameter.

The SortingStyle property should be set as the sum of the desired Bit Flag values from the following table:

	Constant
	Value
	Description

	TL_SORT_IGNORE_CASE
	&H1
	If set, ignore case while sorting.

	TL_SORT_NUMBERS_SORT
	&H2
	If set, treat string representation of numbers as numbers. "10" comes after "2"

	TL_SORT_STRING_SORT
	&H4
	If set, treat punctuation the same as symbols

	TL_SORT_GROUP_ATTOP
	&H8
	If set, TList groups all items which have children at the top of the sorted sub-tree.

Note: This Flag is processed by TList only for settings of SortingStyle with 2nd parameter (SortPriority) = 0

	TL_SORT_GROUP_ATBOTTOM
	&H10
	If set, TList groups all items which have children at the bottom of the sorted branch.

Note: This Flag is processed by TList only for settings of SortingStyle with 2nd parameter (SortPriority) = 0

	TL_SORT_IGNORE_KANATYPE
	&H20
	Do not differentiate between Hiragana and Katakana characters. Corresponding

Hiragana and Katakana characters compare as equal.

	TL_SORT_IGNORE_NONSPACE
	&H40
	Ignore non-spacing characters

	TL_SORT_IGNORE_SYMBOLS
	&H80
	Ignore symbols.

	TL_SORT_IGNORE_WIDTH
	&H100
	Do not differentiate between a single-byte character and the same character

as a double-byte character.

	TL_SORT_FLOAT_NUMS_SORT
	&H200
	Apply for sorting of Floating point numbers.

Takes fractional part of number into account when sorting.

Note: Bit Flag values, TL_SORT_GROUP_ATTOP and TL_SORT_GROUP_ATBOTTOM may not be applied together.

Parameters

 SortPriority – (default 0) – identifies sort priority for the specified sort criteria.
TList can sort on multiple data sets using a prioritized sort. TList will sort data first according to the specification of SortingMethod, SortingKey, and SortingStyle having parameter SortPriority = 0, followed the sort criteria data having SortPriority 1, 2, 3, …

Remarks

Changing any of the SortXXX properties while the Sorted property is set to TLSORTSTATE_ON will resort the data in TList.

If only one column or ItemValue is used for sorting, the SortPriority parameter of the SortingMethod, SortingStyle and SortingKey properties may be omitted by users of Visual Basic but must be explicitly set by users of Visual C.

TIP: When the Sorted property is applied to the a Tree Grid (TList.Grid.Sorted =) only rows which hold items of zero indentation level will be sorted. To sort other levels of hierarchy use ItemSortXXX properties (for sorting children of some node) or SortXXX properties of the Leveldefs object.

Data Type

Sorted – Enum

SortingKey - Variant

SortingMethod – Integer

SortingStyle - Integer

Example

' 1) SPECIFY SORTING WITHIN A GRID

' **** Note if grid is heirarchic this will not sort chld items

' Sort – 1st by Last Name, 2nd by First Name – Ascending order, ignoring case

 With TList1.Grid

.Sorted = TLSORTSTATE_RESET

.SortingKey(0) = "Last Name"

.SortingMethod(0) = TLSORT_ASCENDING

.SortingStyle(0) = TL_SORT_IGNORE_CASE

.SortingKey(1) = "First Name"

.SortingMethod(1) = TLSORT_ASCENDING

.SortingStyle(1) = TL_SORT_IGNORE_CASE

.Sorted = TLSORTSTATE_ON

 End With

' 2) SORT AN ITEM GRID by 3rd Column Numerically

 With TList1.ItemGrid (27) ' item grid belonging to item index 27

.Sorted = TLSORTSTATE_RESET

.SortingKey(0) = 3

.SortingMethod(0) = TLSORT_ASCENDING

.SortingStyle(0) = TL_SORT_NUMBERS_SORT

.Sorted = TLSORTSTATE_ON

 End With

' 3) SPECIFY SORTING BY HEIRARCHIC LEVEL

' Sort all Root items by visible text

' – Ignore Case, keep items with children at the top

 With TList1.LevelDefs(0)

.Sorted = TLSORTSTATE_RESET

.SortingKey = ""

.SortingMethod = TLSORT_ASCENDING

.SortingStyle = TL_SORT_IGNORE_CASE + TL_SORT_GROUP_ATTOP

.Sorted = TLSORTSTATE_ON

 End With

See Also

ItemSorted property, ItemSortingStyle property, ItemSortingMethod property, ItemSortingKey property

Format Propertyxe "Format property"

xe "TListCellDef object"
Applies To

TListCellDef Object

Description

The format property determines the visual text presented in a cell by applying a formatting string to the data content of a cell holding a numeric value.

NEW in TList 7 – NEW FEATURE – TList's format property TList 7 now supports a much wider array of formats.

Data Type

String

Syntax

[form.]TList1.ItemCell(ItemIndex&).Format [= str$]
[form.]TList1.Grid.Cells(Row&, Col&).CellDef.Format [= str$]
[form.]TList1.ItemGrid(ItemIndex&).Cells(Row&, Col&).CellDef.Format [= str$]
Settings

The format property is set with a string expression indicating how to display the contents of a cell holding a numeric value. The string expression may be made up of one to four elements, separated by semicolons. The element of the string is applied as a format is determined by whether the value of the cell is Positive, Negative, Zero or Null (not set).

For Example:

TList1.Grid.ColDefs(Column).CellDefs.format = _

"PlusFormat; MinusFormat; ZeroFormat; NullFormat"

In this case if the value of data in a cell in the specified column is positive the format string "PlusFormat" would be applied, if the value were negative "MinusFormat" would be applied, etc.

If one of the elements is not specified, the format specified by the first element is used. For example, in the following case the format string "UseMeForPlusOrMinus" will be used for formatting both Positive and Negative values since no 2nd element (for negative values handling) is provided within the format string:

TList1.Grid.ColDefs(Column).CellDefs.format = _

"UseMeForPlusOrMinus;; ZeroFormat; NullFormat"

In general each element of the format string expression may contain a combination of

 a) any desired static text – this is text that will appear exactly as entered in the Format string.

 b) and/or a reference to one of several predefined Named Formats

 (such as "*Currency*" or "*Fixed*" – see description and tables below),

 or a User-Defined Format string

 (such as "*#,###.##*", or "*MMDDYYYY*" – see description and tables below)

For example:

FormatString = "static_text "

FormatString = "*Named Format*"

FormatString = "*UserDefinedFormatString*"

FormatString = "static_text*Named Format*more_static_text"

FormatString = "static_text*UserDefinedFormatString*more_static_text"

If no Named Format or UserDefinedFormat is specified within an element of the format string only the static text from that element will be shown.

A Named Format refers to one of several standard predefined formats such as "*Currency*" or "*Fixed*" etc. (see table below). Such references must be surrounded by asterisks "*". When a Named Format is applied by TList from within an element of a Format String, the numeric or date typed data value actually assigned to the TList cell will be formatted (converted) according to the named format and surrounded by the static text for presentation.

 For example, applying a format string with a first element (for positive values) of "Price = $*Currency* - a bargain" to a TList cell with a value of 1000 would result in a display text of "Price = $1,000.00 - a bargain".

TList's User-Defined formats provide additional great flexibility in presenting numeric or date / time data. Using the user-defined format support you can easily display your own formats for numbers, dates, and times by specifying a custom format string between asterisks "*". You must use a special reserved symbols (explained in the tables below) to display parts of the Cell Value. The Format property converts the numeric or date-typed value to a text string and gives you control over the string’s appearance. For example, you can specify the number of decimal places, leading or trailing zeros, and various date and time formats.

Note: The Number format symbols may be applied to Number data type values only, and Date/Time format symbols may be applied to Date/Time data type values only.

TABLE OF NAMED FORMATS

The following table shows a number of named formats available to the user:{QUOTE the table below is meant}
	Data Type
	Named Format
	Description

	Number
	(Default) Empty string

OR

"Generic"
	General format - Displays as entered.

	Number
	"*Currency*"
	Display number with thousand separator, if appropriate; display two digits to the right of the decimal separator. Note that output is based on system locale settings.

	Number
	"*Fixed*"
	Display at least one digit to the left and two digits to the right of the decimal separator.

	Number
	"*Standard*"
	Display number with thousands separator, at least one digit to the left and two digits to the right of the decimal separator.

	Number
	"*Percent*"
	Display number multiplied by 100 with a percent sign (%) appended to the right; always display two digits to the right of the decimal separator.

	Number
	"*Scientific*"
	Use standard scientific notation.

	Number
	"*Yes/No*"
	Display No if number is 0; otherwise, display Yes.

	Number
	"*True/False*"
	Display False if number is 0; otherwise, display True.

	Number
	"*On/Off*"
	Display Off if number is 0; otherwise, display On.

	Date/Time
	"*General Date*"
	Display a date and/or time. For real numbers, display a date and time (for example, 4/3/93 05:34 PM); if there is no fractional part, display only a date (for example, 4/3/93); if there is no integer part, display time only (for example, 05:34 PM). Date display is determined by your system settings.

	Date/Time
	"Long Date*"
	Display a date according to your system's long date format.

	Date/Time
	"*Medium Date*"
	Display a date using the medium date format appropriate for the language version of Visual Basic.

	Date/Time
	"*Short Date*"
	Display a date using your system's short date format.

	Date/Time
	"*Long Time*"
	Display a time using your system's long time format: includes hours, minutes, seconds.

	Date/Time
	"*Short Time*"
	Display a time using the 24-hour format (for example, 17:45).

TABLE OF USER-DEFINED NUMBER FORMAT SYMBOLS
The following table identifies characters you can use to create user-defined Number formats:

	Symbol
	Description

	0
	Digit placeholder; prints a trailing or a leading zero in this position, if appropriate.

	#
	Digit placeholder; never prints trailing or leading zeros.

	.
	Decimal placeholder.

	,
	Thousands separator.

	– + $ () space
	Literal character; characters are displayed exactly as typed into the format string.

Examples of user-defined Numeric Formats

The following Table illustrate the result of applying Numeric Formats to the value 8315.4

	Format syntax
	Result

	00000.00
	08315.40

	#####.##
	8315.4

	##,##0.00
	8,315.40

	$##0.00
	$315.40

TABLE OF USER-DEFINED DATE / TIME FORMAT SYMBOLS
The following table identifies characters you can use to create user-defined date/time formats:

	Symbol
	Description

	(:)
	Time separator - In some locales, other characters may be used to represent the time separator. The time separator separates hours, minutes, and seconds when time values are formatted. The actual character used as the time separator in formatted output is determined by your system settings.

	(/)
	Date separator - In some locales, other characters may be used to represent the date separator. The date separator separates the day, month, and year when date values are formatted. The actual character used as the date separator in formatted output is determined by your system settings.

	c
	Display the date as ddddd and display the time as
ttttt, in that order. Display only date information if there is no fractional part to the date serial number; display only time information if there is no integer portion.

	d
	Display the day as a number without a leading zero (1 – 31).

	dd
	Display the day as a number with a leading zero (01 – 31).

	ddd
	Display the day as an abbreviation (Sun – Sat).

	dddd
	Display the day as a full name (Sunday – Saturday).

	ddddd
	Display the date as a complete date (including day, month, and year), formatted according to your system's short date format setting. The default short date format is m/d/yy.

	dddddd
	Display a date serial number as a complete date (including day, month, and year) formatted according to the long date setting recognized by your system. The default long date format is mmmm dd, yyyy.

	w
	Display the day of the week as a number (1 for Sunday through 7 for Saturday).

	ww
	Display the week of the year as a number (1 – 54).

	m
	Display the month as a number without a leading zero (1 – 12). If m immediately follows h or hh, the minute rather than the month is displayed.

	mm
	Display the month as a number with a leading zero (01 – 12). If m immediately follows h or hh, the minute rather than the month is displayed.

	mmm
	Display the month as an abbreviation (Jan – Dec).

	mmmm
	Display the month as a full month name (January – December).

	q
	Display the quarter of the year as a number (1 – 4).

	y
	Display the day of the year as a number (1 – 366).

	yy
	Display the year as a 2-digit number (00 – 99).

	yyyy
	Display the year as a 4-digit number (100 – 9999).

	h
	Display the hour as a number without leading zeros (0 – 23).

	hh
	Display the hour as a number with leading zeros (00 – 23).

	n
	Display the minute as a number without leading zeros (0 – 59).

	nn
	Display the minute as a number with leading zeros (00 – 59).

	s
	Display the second as a number without leading zeros (0 – 59).

	ss
	Display the second as a number with leading zeros (00 – 59).

	ttttt
	Display a time as a complete time (including hour, minute, and second), formatted using the time separator defined by the time format recognized by your system. A leading zero is displayed if the leading zero option is selected and the time is before 10:00 A.M. or P.M. The default time format is h:mm:ss.

	AM/PM
	Use the 12-hour clock and display an uppercase AM with any hour before noon; display an uppercase PM with any hour between noon and 11:59 P.M.

	am/pm
	Use the 12-hour clock and display a lowercase AM with any hour before noon; display a lowercase PM with any hour between noon and 11:59 P.M.

	A/P
	Use the 12-hour clock and display an uppercase A with any hour before noon; display an uppercase P with any hour between noon and 11:59 P.M.

	a/p
	Use the 12-hour clock and display a lowercase A with any hour before noon; display a lowercase P with any hour between noon and 11:59 P.M.

	AMPM
	Use the 12-hour clock and display the AM string literal as defined by your system with any hour before noon; display the PM string literal as defined by your system with any hour between noon and 11:59 P.M. AMPM can be either uppercase or lowercase, but the case of the string displayed matches the string as defined by your system settings. The default format is AM/PM.

Examples of user-defined Date/Time Formats

The following Table illustrate the result of applying

Date/Time Formats to the value, Wednesday, January 27, 1993
	Format syntax
	Result

	m/d/yy
	1/27/93

	dddd, mmmm dd, yyyy
	Wednesday, January 27, 1993

	d-mmm
	27-Jan

	mmmm-yy
	January-93

	hh:mm AM/PM
	07:18 AM

	h:mm:ss a/p
	7:18:00 a

	d-mmmm h:mm
	3-January 7:18

Remarks

The asterisk,"*", is a special character. To have TList present an asterisk in the displayed text use the string "/*" as part of the format string.

**** TList cells containing non-numeric values will not be affected by the Format property. Thus data set with the List property or AddItem method of TList is not affected by the Format property of TList.

Example

' The following code resets a Format String:

TList1.Grid.GridCellDef.Format = ""

' Format Column 1 of Grid to display a Short date

TList1.Grid.ColDefs(1).CellDef.Format = "*Short Date*"

' Format entire grid to show text "Empty" in all empty cells:

TList1.Grid.GridCellDef. Format = ";;;Empty"

' Display "Not Null" for all positive values,

' Display Negative and Zero values in Generic format

' and Display "Null for Empty Cells

Format = "NotNull;;;Null"

' Display "Plus Format" for all Positive values"

' "Minus Format" for all Negative Values

' "Zero Format" for both Zero and for Null values

Format = "PlusFormat; MinusFormat; ZeroFormat; ZeroFormat"

' Below is a sample how you can emulate "Yep/Nope" format:

' This code will show "Yep" in cells containing positive or negative values,

' and Nope for cells containing a value of zero, or no value at all (null).

TList1.Grid.ColDefs(1).CellDef.Format = "Yep;Yep;Nope;Nope"

DragDropEx, DragOverEx Eventsxe "DragDropEx event"

xe "DragOverEx event"
Description

These events are fired for TList as a drop target immediately before OleDragDrop and OleDragOver events when using TList's AutoDragDrop support.

Syntax

Sub TList_DragDropEx(Source As TList, X As Single, Y As Single)
Sub TList_DragOverEx(Source As TList, X As Single, Y As Single, State As Integer)
Remarks

Note these events are provided for migration of applications built prior to TList 7. In previous versions of TList AutoDragDragDrop support was based on Visual Basic Drag Drop technology and triggered VB style DragDrop and DragOver events. TList 7 now uses OLEDragDrop technology for internal drag drop mechanisms. As a result the VB events DragDrop and DragOver can not be triggered by the Automated drag drop actions. Old DragDrop code should therefore be moved from DragDrop and DragOver events to DragDropEx and DragOverEx events. New applications should simply use the OleDragDrop and OleDragOver events.

The VB native DragDrop and DragOver events will still be triggered by drag and drop initiated programmatically (ie: when calling the Drag method to initiate Drag and drop). In this case the DragDropEx and DragOverEx methods will not be called.

It is NOT necessary to call the OnDragDrop method or the OnDragOver methods within OnDragDropEX or OnDragOverEX events, but calling these methods will not cause a problem.

TitlesResize Eventxe "TitlesResize Event"

xe "New in Version 6!"
Description

This event is triggered when end-user starts to change a column width or row height by dragging a grid line in the grid row titles column, or in the grid column titles row .

NEW in TList 7 – NEW FEATURE / Syntax Change – An additional parameter has been added to the event to identify the grid in which the change is being made (in case there are multiple grids held within TList.

Syntax

Sub TList1_TitlesResize([Index As Integer,] ByVal objGrid As TListProLibCtl.TlistGrid,

[image: image4.wmf]
ByVal RowOrColumnFlag As Integer, ByVal RowOrColumnIndex As Long,

[image: image5.wmf]
ByVal Size As Long)
Parameters

	Parameter
	Description

	ObjGrid
	Returns the Grid object in which a row or column is being resized

	RowOrColumnFlag
	Specifies whether a row or a column is being resized.

= TLTITLESRESIZE_ROW if user is changing the height of a row

= TLTITLESRESIZE_COL if user is changing the height of a column

	RowOrColumnIndex
	The index of the row or column

	Size
	New column width or row height in pixels.

Remarks

Note: This event will be called BEFORE the GridCellClick or Click events when the user is resizing a row or column.
AutoSizeRow Method,
AutoSizeColumn Method

Description

The AutoSize methods provide a mechanism to resize rows or columns to fit the data held within a TList grid.

The AutoSizeRow method automatically resets the height of a specified row to fit the maximum height of the data in the row, and returns the new row height in pixels.

The AutoSizeColumn method automatically resets the width of a specified column to fit the maximum width of the data in the column and returns the new column width in pixels.

Syntax

lNewHeight = GridObject.AutoSizeRow (lRowIndex)

lNewWidth = GridObject.AutoSizeColumn (lColumnIndex, AutoSizeFlags)

Parameters

lRowIndex – specifies the row number within a grid

lColumnIndex –specifies a column number within a grid

AutoSizeFlags – specifies what data should be considered when calculating the width

	Constant
	Value
	Description

	GRID_AUTOSIZECOL_DEFAULT
	&H0
	Set column size to widest visible cell in the column.
Note - Width is limited to width of TList window.

	GRID_AUTOSIZECOL
_INCLUDE_INVISIBLE
_CELLS
	&H08

	Width of invisible cells (cells held by collapsed and or hidden items) in the column are taken into the account when autosizing column

* * * This is ignored if specifying GRID_AUTOSIZECOL_ONLY_CURRENTLY_VISIBLE_CELLS flag.

	GRID_AUTOSIZECOL
_EXCLUDE_TITLE_CELL
	&H10

	Ignore width of column title cell when autosizing column.

	GRID_AUTOSIZECOL
_ONLY_CURRENTLY
_VISIBLE_CELLS
	&H20

	Only CURRENTLY visible in TList window items take into account. Items scrolled out of view are ignored from autosizing calculations.

This is generally desirable when working with VirtualItems.

	GRID_AUTOSIZECOL
_UNLIMITED_WIDTH
	&H40
	Width of the column is not limited by width of TList window.

Remarks

The AutoSizing mechanism in TList can NOT support RTF formatted data.

Tip: The AutoSizeOptions property may also be used to instruct TList to automatically resize columns when the user double clicks on a Grid Column Title.

Example

 NewHeight = TList1.Grid.AutoSizeRow (134)

 NewWidth = TList1.Grid.AutoSizeColumn (122 , 0)

See Also

AutoSizeOptions Property

AutoSizeOptions Property

Description

The AutoSizeOptions property specifies whether TList will automatically resize grid columns to fit the contained data in response to a double click on the separator in the column title cells between columns.

Syntax

GridObject.AutoSizeOptions = Desired Setting
Values

AutoSizeFlags – The property may be set to 0, (disabled)

 or to a Logical OR combination of any of the following settings:

	Constant
	Value
	Description

	GRID_AUTOSIZE_COLUMN_ON_
SEPARATOR_DOUBLECLICK

(default)
	&H01
	Set column size to widest visible cell in the column.

Note - Width is limited to width of TList window.

	GRID_AUTOSIZE_INCLUDE_
INVISIBLE_CELLS
	&H08

	Width of invisible cells (cells held by collapsed and or hidden items) in the column are taken into the account when autosizing column

* * * This is ignored if specifying GRID_AUTOSIZECOL_ONLY_CURRENTLY_VISIBLE_CELLS flag.

	GRID_AUTOSIZE_EXCLUDE_
TITLE_CELL
	&H10

	Ignore width of column title cell when autosizing column.

	GRID_AUTOSIZE_ONLY_
CURRENTLY_VISIBLE_CELLS
	&H20

	Only CURRENTLY visible in TList window items take into account. Items scrolled out of view are ignored from autosizing calculations.

This is generally desirable when working with VirtualItems.

	GRID_AUTOSIZE_UNLIMITED_
WIDTH
	&H40
	Width of the column is not limited by width of TList window.

Remarks

TList will adjust the column width as required in either direction – either reducing or enlarging column width to fit the data.

TList associates each column with the Column separator to it's right. To automatically resize the column width double click on the column separator to the right

The AutoSizing mechanism in TList can not currently support RTF formatted data.

Example

 ' Turn on Automatic Resizing Feature, include cells which may be currently collapsed

 TList1.Grid.AutoSizeOptions
 GRID_AUTOSIZE_COLUMN_ON_SEPARATOR_DOUBLECLICK _

 OR GRID_AUTOSIZE_INCLUDE_INVISIBLE_CELLS

 ' Turn Off Automatic Resizing Feature

 TList1.Grid.AutoSizeOptions 0

See Also

AutoSizeColumn and AutoSizeRow methods
MarginLeft, MarginTop, MarginRight, MarginTop Properties

Applies to

TListCellDef objects

Description

These properties specify an offset between the cell boundaries and any text or graphics contained within an cell. Measurement is in units of TList's container's Scale Mode.

Example

TListGrid.Cells(row, col).CellDef.MarginLeft = offset

TListGrid.Cols(column).CellDef.MarginLeft = offset

�PAGE \# "'Page: '#'�'" �� Was CNTRL (in TList beta version 7.014 now SHIFT

�PAGE \# "'Page: '#'�'" �� = 0 in 7.0.14 but changed to 1 in 7.0.16

�PAGE \# "'Page: '#'�'" �� = 1 in 7.0.14 but changed to 2 in 7.0.16

�PAGE \# "'Page: '#'�'" �� = 2 in 7.0.14 but changed to 3 in 7.0.16

