Bennet-Tec WebSignatureTM 3 ActiveX Control

- Version 3.0.0 – 25 October 2010 -

© Bennet-Tec Information Systems, Inc

Description

The WebSignature (WebSign.OCX) ActiveX control presents a signature window where users can sign their name with a mouse or a pen tablet. WebSignature can then capture that signature and submit (POST) it back to a web server.

WebSignature is implemented as an ActiveX component (and associated CAB files) that can be embedded in either an HTML web page or a standard Windows application. The control is in fact not in any way limited to web use – signatures may be captured and saved locally or over a standard windows network.

WebSignature is compatible with both Desktop versions of MS Windows (95, 98, ME, NT, 2000, XP, 2003, Vista and Windows 7, 32- and 64-bit versions of IE) as well as Windows Mobile edition for the Pocket PC (for Pocket PCs based on ARM compatible processors). When used within a Web page, the WebSignature control is compatible with browsers that support ActiveX controls (e.g. Microsoft Internet Explorer version 5.0 or higher).

The signature is transmitted to the server as a set of curves. Sample ASP and ASP.NET projects are provided for recognizing the data received by the server as an image which may be then saved as an image file, stored in a database, or returned to the user in a new web page for confirmation.

WebSignature supports a set of properties to control the appearance of the signature capture window – border thickness and color, line thickness and color, presentation of a baseline, and specification of background color.

Licensing

Each developer license is valid for one developer, for sending signatures to a single domain name on a single server. Multiple licenses must be ordered if there is more than one developer working on a project, or more than one domain name to which signatures will be sent, or more than one server on which signatures are collected.

There are NO run-time or royalties fees for end-users working with (entering their signature) a compiled Web Signature based application or web site.

When you purchase the WebSignature control you will be asked for the Domain name of the web site on which the application will be hosted. This domain name should be used to set the URL when posting a response with the Submit method and should be used to set the LicensedSite property. Bennet-Tec will also provide you with a corresponding license key which should be used to set the LicenseKey property.

Using the WebSignature Control

Inserting the control in an HTML page

It's really simple to add the WebSignature component to a web page in either an ASP or ASP.NET project.

Place the following files on your web server

 WebSign3.ARMV4.CAB - this version is used by Pocket PC based on ARM processor;

 WebSign3.WIN65.ARMV4.CAB - this special edition of WebSignature control that is used under Windows Mobile version 6.5;

 WebSign3.i386.CAB - this version is used by Desktop PC based on Intel processor;

 WebSign3.x86.CAB - this version is used by 32-bit Intel Desktop PC;

 WebSign3.x64.CAB - this version is used by 64-bit Intel Desktop PC.

Create an instance of the WebSignature component within the web page by using the HTML <OBJECT> tag.

 <OBJECT id="WebSignature" name="WebSignature" width="180" height="55"

 classid="clsid:4E534257-3300-4E22-83A5-AD614CB96642"

 CODEBASE="WebSign.i386.CAB#version=3,0,0">

 <PARAM name="BorderWidth" value="-1">

 <PARAM name="BaseLine" value="70">

 <PARAM name="BaseLineWidth" value="-2">

 <PARAM name="LicensedSite" value="MySignatureSite.Com">

 <PARAM name="LicenseKey" value="MyLicenseKey">

 </OBJECT>

The Width and Height parameters specify the size of the signature window on the web page

<PARAM> tags allow you to specify initial values for presentation of the control window (see list and description of Properties below).

The CODEBASE parameter is only needed for Desktop version of Internet Explorer (this enables automatic ActiveX installation - when the HTML page that refers to this ActiveX is opened for the first time). If included this should point to the file “Websign.i386.CAB” on your server. When the web page is opened on Pocket PC devices this parameter will be ignored, so the same page can be open on both desktop and mobile versions.

The LicensedSite and LicenseKey properties should be set to the web domain specified when you purchased your license, and the corresponding license key you received. Without this specification the control will display a Demo notice in the background.

Alternate Method for Inserting the control in an HTML page

Rather than explicitly inserting the Object tag as above, another option is to make use of the InsertWebSign Function that is part of the JavaScript library file WebSignFuncs.js provided with the Web Signature Install Kit (See documentation section “Library of helpful functions “)

The advantage of using the included JavaScript library functions is that these functions also

include error checking and verification that the control is properly functioning

Example

 <script language="jscript" type="text/jscript">

 InsertWebSign('width="180" height="55"',

'<PARAM name="LicensedSite" value="yoursite.com">' +

'<PARAM name="LicenseKey" value="<LICKEY>">' +

'<PARAM name="BorderWidth" value="5">' +

'<PARAM name="DrawWidth" value="1">' +

'<PARAM name="DrawColor" value="255">' +

'<PARAM name="BackColor1" value="-1">');

 </SCRIPT>

 </P>

The LicensedSite and LicenseKey properties should be set to the web domain specified when you purchased your license, and the corresponding license key you received. Without this specification

Note Regarding First Time use on a Pocket PC/ Windows Mobile device - It is not possible for the WebSignature control to automatically self install on a Pocket PC device. The control must be installed from the corresponding installation package (WebSign.ARM.CAB file) before using the WebSignature control for the first time on Pocket IE,. This is a requirement of Pocket IE. But it is simple to have the web application check the IE version and redirect the user’s browser to the WebSignature installation page (This is done using VBScript / JavaScript in the OnLoad event - see the WebSignFuncs.js file which contains useful functions that provide WebSignature component installation and version checking).

Note Regarding Updates - Periodically Bennet-Tec may release a new build of the OCX and CAB files. When updating the CAB file containing a new OCX on your server be sure to update the version number referenced by the CodeBase parameter of OBJECT tag in the HTML files. This will force the client to use the most recent version of the component. Pocket IE does not provide support for automatic update of installed ActiveX control, so the user will have to reinstall new version of the WebSignature control manually.

Verifying that the Control is Working the on Web Page

For a variety of reasons a control may sometimes not load properly within a web browser. This is generally due to either User Security settings (turning off ActiveX support), or the lack of installation of the control on the user’s system (especially on the Pocket PC where user must specifically install ActiveX before the first time it is used). It is therefore helpful to be able to verify that the HTML page holding the web control loaded the control properly, and to redirect user to another web page if there is a problem (instructing user to reset IE security settings, or to install the control).

There are two techniques which may be most useful:

a) Provide an error handler event to handle the <OBJECT> tag.

For example

 <OBJECT ...

 onerror="OnOCXError()"

 ...

 </OBJECT>

 <SCRIPT language="JScript">

 function OnOCXError ()

{ document.location.href = "OCXerror.htm"; }

 </SCRIPT>

The OnError statement in the Object tag will trigger the OnOCXError script if the control fails to load and this will redirect browser to a web page where you can further handle this situation.

Unfortunately the OnError handler can be recognized in OBJECT tag only for Desktop IE. So another technique is needed in case browser is running on PocketPC.
b) Provide an error handler to handle OnLoad event within Body Tag and test the Clear method of the control.

Example

 <BODY OnLoad="OnPageLoad()">

 <SCRIPT language="JScript">

 function OnPageLoad ()

 {

 try

 { WebSignature.Clear();

 }

 catch(e)

 { document.location.href = "PPCInstall.htm";

 }

 }

 </SCRIPT>

The OnLoad statement in the <BODY> tag will trigger the OnPageLoad script when the page first loads. Here we call the controls’s Clear method as a test, and redirect the browser in case of error. The WebSignFuncs.js file included as part of the Web Signature Install kit, includes a sample OnPageLoad function that may be used to verify the installed version of the WebSignature component according to currently running Internet Explorer version.

Submitting, Validating and Processing the Result

The web page will generally have a Clear and a Submit button. To send the signature back to the server, the click event of the Submit button should call WebSignature’s Submit method. The Signature will be sent in either binary or in hexadecimal text format (choice of format is determined by a parameter of the Submit method). Please refer to the section below, “Format of POST data” for details of posted signature data.

Alternatively the client side script may read the SignatureData property. This can be used to return the content of the SignatureData control in a variety of formats which may then be sent to the server using your own submit mechanisms.

It is reasonable to validate the data within the client before sending the signature to the server.

Web Signature has several properties which may be useful – Valid, NumCurves, TotalPoints.

You may establish your own criteria (such as minimum number of points or curves in a signature) for purposes of validation. In the simplest case, it may be enough to simply verify that there is some data. This can be done by reading the Valid property of the control.

For Example:

 function OnSubmit ()

 { if (WebSignature.Valid)

 { WebSignature.Submit("WebSign.aspx") ; }

 else

 { alert("You must sign before hitting submit ") ; }

 }
Once sent, the data will be received at the server where it may be stored or processed to recreate an image.

Rather than coding your own OnSubmit function you may use the OnSubmit function in the WebSignFuncs.js file included with the Web Signature Install kit to post signature data to a server.

Example:

<input onclick="OnSubmit(“yourURL.asp”, 33)" type="button" value="Submit" />
Processing the Result in ASP.NET

In ASP.NET you can use the ‘Request’ object to get the response that was sent from the browser back to the server.

The ContentLength property of the Request object returns the length of input string.

The .InputStream property of the Request object returns the input stream object itself.

You may directly copy content of this input stream to a database field. You may also convert this input stream to a string:

// ASP.NET code retrieving signature string into

// variable strInput

BinaryReader rdr = new BinaryReader(Request.InputStream);

string strInput = new string(rdr.ReadChars(Request.ContentLength));
Input data from the POST request can be converted to a set of polylines that can be drawn on some Graphic object later. See the ReadPoints method of the WebSign.aspx.cs file.

Bennet-Tec also provides a special WebSignature.NET component that can convert the POST response from the client to a picture or a set of polylines. To use the WebSignature.Net component, first create an object of type BTIS.WebSignature.SignatureServer and then assign the input stream to this object (the type of request will be recognized automat\ically).

BTIS.WebSignature.SignatureServer SignSrv =

new BTIS.WebSignature.SignatureServer();

SignSrv.SetSignature(Request.InputStream);
After that you may use properties and methods of the ‘SignSrv’ object to obtain pictures or curve data. For example, you may create a new image object based on the signature data:

Bitmap img = SignSrv.Picture;

You may find more information about this component in the section, “Bennet-Tec WebSignature .NET Serverside Control”.

There are several ASP.NET sample projects that illustrate how to simply process client’s request with their signatures. “WebSignServer” and “PostCard” offer simple examples of recreating the signature image and returning to the browser as confirmation for end-user.

PostCard
Illustrates manually decoding and processing the returned signature data;

WebSignServer
Illustrates the use of the Web Signature ServerSide .NET component to automate decoding and processing of the returned signature data;

ADODB
Illustrates Saving and Loading image back from an Access database
as well as storing Time Stamp and User’s IP Address in the database.

NOTE: The structure of the POST data as sent by WebSignature control is documented in the section, “Format of POST data”.

Processing the Result in ASP

In a standard ASP script you can use the Request object to get the response that was sent from the browser back to the server.

The TotalBytes property of the Request object returns the length of the response and is useful to verify that there is data to process;

The BinaryRead property of the Request object returns the actual response string.

You may save input signature data directly to a database of you may manually parse it and use third-parties components to create desired images.

You may also use the WebSign.OCX itself on server side to handle the processing of the data and generation of an image suitable for return back to the client browser.

1. Create a server side instance of the Web Signature object:

Dim objSign

Set objSign = Server.CreateObject("WebSign.WebSignature")
2. Set the LicensedSite and LicenseKey properties with your license information as provided by Bennet-Tec)

objSign.LicensedSite = "demo.com"

objSign.LicenseKey = "111111"

3. Assign data from POST request to the SignatureData property of the control

objSign.SignatureData = Request.BinaryRead(Request.TotalBytes)

4. Have OCX generate an image and write this to the output stream (send it back to the browser)

Const WSF_PICTURE = &H80 ' Bitmap image

Const WSF_PICTUREGIF = &HC0 ' GIF image

Response.ContentType = "image/gif"

Response.BinaryWrite objSign.SignatureData (WSF_PICTUREGIF)
IMPORTANT NOTE: For server side use the OCX must be registered on Windows Server machine (Place the OCX in the same directory as your ASP script and register using the Windows RegSvr32.EXE utility).

See the ASP simple projects (located in Samples\ASP folder) for examples of recreating the signature image and returning to the browser as confirmation for end-user.

Using the control in a standard Windows application

While the component is called WebSignature, it is really just as easy to use the Web Signature ActiveX control in a standard Windows application.

In VB environment (or any other environments that support ActiveX control) the WebSignature component can be created either at design time as a control window component (ActiveX control) or it can be created dynamically.

Also see Visual Basic samples that can be found in the Samples\VB folder.

WebSignature Control Reference

Properties

The WebSignature ActiveX control supports the following properties:

	Property
	Default
Value
	Description

	DrawWidth
	1
	Determines the line thickness of the signature (in pixels)

	DrawLineSize
	1
	Determines the line thickness of the signature (in 1/10th of a point). This is the same as DrawWidth, but measured in device independent units.

	DrawColor
	Black
	Determines the line color of the signature.

	BorderWidth
	-1
	Determines the thickness of the border / frame drawn around the signature area.

Values > 0 specify thickness in pixels

Value = 0 specifies that no border should be shown

Value = ‑1 specifies use of a default border width – the width is as specified by user’s Windows system settings).

	BorderColor
	Black
	Determines the border color.

	BackColor
	-1
	Determines the color that is used to fill drawing area background.

Value = ‑1 specifies a transparent background
(this works for Desktop IE only).

	BaseLine
	70
	Determines the position of a signature base line in percent from the top of drawing area.

When BaseLine is 0 – no baseline is displayed..

	BaseLineWidth
	-2
	Determines the width or style of the base line.

Positive value specifies line width in pixels.

Negative value specifies dotted base line in one pixel width (for desktop version it is possible to specify several dotted line styles: ‑1, ‑2, ‑3, ‑4).

	BaseLineColor
	Gray
	Determines the base line color.

	ReadOnly
	FALSE
	Determines whether the signature can be edited.

	Valid
	0
	Returns a value of TRUE (= -1) if the control contains some marks drawn by the user

	NumCurves
	0
	Returns the number of curves drawn by the user in the control. If the control is empty, this property returns 0

	TotalPoints
	0
	Returns the total number of points in all curves drawn by the user in the control. If the control is empty, this property returns 0

	ImageWidth, ImageHeight
	
	These properties allow specification of the size of the saved signature image. These properties control the size of the picture generated by the SavePicture method, as well as the signature boundaries returned by the SignatureData property (all signature curves will be inscribed into the specified rectangle).

Either ImageWidth or ImageHeight or both may be zero. If one of these properties is zero then the corresponding dimension will be calculated automatically according to the aspect ratio of the signature control window. If both properties are zero, then dimensions of signature image will be set equal to the current visible size of the Signature control window.

These properties allow you to always receive signatures in the same size independent on client's computer screen resolution.

	SignatureData

([Flags])
	
	The SignatureData property is of Variant datatype.

This property holds the current signature data (a set of curves).

The format of signature data is the same as the POST data sent in the Submit method. If the Flags parameter is omitted then signature data will be returned in String format.

- When Read – SignatureData returns a set of signature curves as a string or a byte array (depending on value of the optional Flags parameter).

The control returns an empty value if empty.

- When Set – SignatureData updates the display within the control (setting SignatureData may be used to re-present data previously read and stored).

 The optional Flags parameter determines the format of the returned data. This parameter may be set using the same combination of flags as the Flags parameter in the Submit method. In addition for Version 1.0.x or newer the flags parameter may hold the following values to specify the return of an image in binary format, or as an OLE picture object, or in a format that can be used to store in a database field as Bitmap Image OLE object.

The following bit values may be combined (OR’d) and passed as the Flags parameter to control the format of the data returned when reading the SignatureData property:

WSF_PICTURE
(0x80)

Returned data is a bitmap image in binary format;

WSF_PICTUREGIF
(0xC0)

Returned data is a GIF image in binary format;

WSF_PICTUREOLE (0xE0)

Data is returned as an OLE Picture (for example it can be assigned to a PictureBox):
Picture1.Picture = WebSign.SignatureData(WSF_PICTUREOLE Or WSF_ORIGINALSIZE);
WSF_PICTUREOLEWMF (0xF0)

Same as previous flag (WSF_PICTUREOLE), Data is returned as an OLE Picture, but constructed as a metafile picture type:
Picture1.Picture = WebSign.SignatureData(WSF_PICTUREOLEWMF Or WSF_BACKGROUND);
WSF_BACKGROUND (0x02)

This flag bit value can be combined with WSF_PICTUREOLEWMF to create a metafile with a solid background.
Otherwise signatures returned in metafile format will consist of signature curves only, without a background.

WSF_PICTUREDATA (0xA0)

Setting this flag bit value tells the SignatureData property to return the current signature data as a byte array that can be used to initialize a BLOB database field (as a Bitmap Image entity):
rsTable.Fields(“Picture”).Value = WebSign.SignatureData(WSF_PICTUREDATA Or WSF_ORIGINALSIZE)

[this assumes that the “Picture” field is of OLE Object type]

EXAMPLE:

function On_ZapTheMargin ()
{ /* Remove white space from top left of signature */

var vData;

vData = WebSignature.SignatureData(0);

WebSignature.SignatureData = vData;
}

	LicensedSite

And

LicenseKey
	
	The LicensedSite and LicenseKey properties must contain matched values to enable use of the control.

When the control is purchased the purchaser should specify the domain name of the web site on which it will be used. The purchaser will then be provided with a matching License Key. The LicensedSite and LicenseKey properties should then be set with the specified values.

If these properties are not properly set the Submit method of the control will fail, and a DEMO message will appear at the top of control area.

	BaseSite
	
	If this property is not empty, and if a relative URL is specified in the Submit method, then the POST request will be sent to the URL composed by concatenation of these two strings: <BaseSite> + <submit_url>

Methods

The WebSignature control has two methods

Clear

Submit

SavePicture

Clear Method

The Clear() method clears (erases) the current content of drawing area.

function OnClear ()

Example:

<INPUT onclick="OnClear()" type="button" value="Clear">

<SCRIPT language="JScript">

function OnClear ()

{

WebSignature.Clear();

}

</SCRIPT>

SavePicture Method

WebSignature.SavePicture (sFileName As String, [optional] Flags As Long)

The SavePicture method saves the current signature to the specified file as a picture.

The SavePicture method has two parameters:

· sFileName
- a string specifying the local file name where the signature picture should be saved.

· Flags
- An optional parameter that specifies the possible format of picture and picture size. This flag may be set with a logical combination of the following values:

WSF_PICTURE = &H80
- Bitmap image

WSF_PICTUREGIF = &HC0
- GIF image

WSF_ORIGINALSIZE = 1
- Use original picture size (do not strip spaces around the signature).

The Default value for this parameter (if not specified) is WSF_PICTURE Or WSF_ORIGINALSIZE.

Submit Method

WebSignature.Submit (URL As String, [optional] Flags As Long, [optional] Frame As Variant)

The Submit method submits the current signature (content of drawing area) to a web server (specified by URL) as POST request data.

The Submit method has 3 parameters

· URL – a string indicating where the URL data should be sent
(this may be either a relative or absolute address)

· Flags – an optional parameter specifying the format of the POST data sent to the server

· Frame - An optional parameter useful to instruct the server where to present its response.

Example:

 <INPUT onclick="OnSubmit()" type="button" value="Submit">

 <SCRIPT language="JScript">

 function OnSubmit ()

 {

 // submit As string with original size

 WebSignature.Submit("WebSign.aspx", 32 + 1);

 }

 </SCRIPT>
The URL can be either an absolute url (e.g. http://mysite.com/WebSign.asp) or a Web page name relative to current open page (only if the control is used inside Web page). If the BaseSite property has been set, then a page relative to the site specified by BaseSite may be used. The domain name referenced to which the post is directed must be referenced by the LicensedSite property.

The optional Flags parameter determines the format of the data that will be sent to the server. This may be set as a combination (logical OR) of the following values:

	Constant
	Value
	Description

	WSF_ORIGINALSIZE
	1
	Setting this flag indicates that the signature data should be sent using coordinates relative to the top left corner of the control window. The data thus presented will include margin spacing

When this flag is NOT set (default condition) the data posted to the server will be “normalized” – the coordinates of data points representing the signature will be relative to the smallest bounding rectangle holding the signature curves (white space / margins will be subtracted out).

	WSF_STRINGFORMAT
	32
	Setting this flag results in sending POST data in hexadecimal string format.

** NOTE this flag is always set for Pocket PC version.

When not set, Post data will be of binary format.

	WSF_LONGDATA
	64
	Setting this flag specifies that control should always use long (two byte) values for point coordinates.

When this flag is not set the control checks if it is possible to use short (one byte) value for all point coordinates (all coordinates are less than 256). If one of coordinates is greater 255 then long format is used.

The optional Frame parameter determines the name of window frame where the server response should be displayed.

When the Frame parameter is omitted the Server response will be displayed in the current IE window (if the web signature control is being used within a Web page) or ignored (if the control is used within an standard desktop application – e.g.: VB or MS Access environment).

When this parameter specified as a String, it should contain either the name of the HTML frame in which the server response should be presented, or a predefined value chosen from the following list:

	_blank
	Load the server response into a new unnamed window.

	_new
	Load the server response into a new IE window (if such window has already been opened by a Submit request and has not been closed then the same window should be reused).

	_parent
	Load the server response into the immediate parent of the document the control is in; (if the POST request is sent from a frame, then the entire web page will be updated / replaced by returned page).

	_self
	Load the server response into the same window (frame) from which the request originated (all content of the current frame will be replaced).

	_top
	Replaces only the body of the current window (frame). The complete content of the body will be replaced but style sheets and scripts will be retained unchanged.

	_ignore
	Ignore the server response.

	_none
	Use a temporary created IE object to send signature data to server and ignore server response. This setting is useful when the control is used outside of a web page.

The Frame parameter can be also set to an InternetExplorer object that will be used to send signature data and display server response. This is useful when submitting from within a Visual Basic or other application outside of a browser.

 Example:

Dim ObjIE As Object

Set ObjIE = CreateObject("InternetExplorer.Application")

ObjIE.Visible = True

WebSignature1.Submit "WebSign.aspx", , ObjIE

Format of POST data

The WebSignature Control can send data to a server either in binary or in hexadecimal text formats.

Binary format requires less memory and is faster to transmit, but it can be used for the Desktop version only (this is a limitation of Pocket IE which does not support POST for binary data).

Text format (WSF_STRINGFORMAT flag is specified in Submit method) is similar to binary except that each value is encoded as HEX string without any prefixes, (e.g. “0024” is equal to 36).

<type>

<NumCurves><NumPoints><Width><Height>

<NumPtsCur1><pt01.x><pt01.y>…<ptK1.x><ptK1.y>

<NumPtsCur2><pt02.x><pt02.y>…<ptK2.x><ptK2.y>

…

<NumPtsCurN><pt0N.x><pt0N.y>…<ptKN.x><ptKN.y>

(line breaks are used just for pictorial presentation).

	 <type>

	1 byte
	First byte (or character) determines parameter format (actually it is the value from the flags parameter of the Submit method). NOTE this value is always sent as one byte (it is not encoded in HEX format even when WSF_STRINGFORMAT flag is specified).

	<NumCurves>
	2
	Determines the number of curves in signature.

	<NumPoints>
	2
	Determines the total number of points (in all curves).

	<Width>
	2
	Determines the width of signature.

	<Height>
	2
	Determines the height of signature.

	<NumPtsCur?>
	2
	Determines the number of points in current curve.

	<pt??.x><pt??.y>
	1 or 2
	Determines the next point coordinates in current curve.

Coordinates can be either one or two bytes in size (it depends on WSF_LONGDATA flag of <type> value.

Library of helpful functions (WebSignFuncs.js)

The WebSignature installation kit includes a helpful library of JavaScript functions. These functions can be used on your web pages to implement common actions with WebSignature control.

To use this library you must add a reference to the JavaScript file in your web page (in the <HEAD>…</HEAD> section):

 <HEAD>

 <TITLE>WebSignature 3 control sample</TITLE>

 <SCRIPT src="./WebSignFuncs.js" language="JavaScript"

 type="text/javascript">

 </SCRIPT>

 </HEAD>
where the src="./Files/WebSignFuncs.js" parameter specifies a server path to the WebSignFuncs.js file relative to current page address.

InsertWebSign Function

function InsertWebSign(sAttrs, sParams)

The InsertWebSign function inserts a WebSignature control into your Web page with a default name (WebSignature). You may also specify additional parameters and attributes.

 <P>

 <script language="jscript" type="text/jscript">

 InsertWebSign('width="180" height="55"',

'<PARAM name="LicensedSite" value="yoursite.com">' +

'<PARAM name="LicenseKey" value="<LICKEY>">' +

'<PARAM name="BorderWidth" value="5">' +

'<PARAM name="DrawWidth" value="1">' +

'<PARAM name="DrawColor" value="255">' +

'<PARAM name="BackColor1" value="-1">');

 </SCRIPT>

 <input onclick="OnClear()" type="button" value="Clear" />

 <input onclick="OnSubmit(“ws.aspx”, 31)" type="button" value="Submit" />

 </P>

OnPageLoad Function

function OnPageLoad ()

The OnPageLoad function can be called to verify that control is properly loaded and working within the web page. Typically this may be called as part of the HTML Body tag of your web page.

<body onload="OnPageLoad()">

</body>
OnOCXError Function

function OnOCXError ()

The function OnOCXError can be used to respond to an error in loading WebSignature OCX under IE on a Windows desktop operating system. The function responds by redirecting the browser to OCXError.htm page providing the user with helpful instructions to resolve the problem.

If you use the included InsertWebSign Function to insert Web Signature on your web page, error checking is already coded there and will call OnOCXError if needed.

OnWinCEError Function

function OnWinCEError ()

The function OnWinCEError can be used to respond to an error in loading WebSignature OCX under Windows Mobile device. The function responds by redirecting the browser to PPCInstall.htm page prompting the user to reinstall.

If you use the included InsertWebSign Function to insert Web Signature on your web page, error checking is already coded there and will call OnWinCEError if needed.

GetNavigatorVersion Function

function GetNavigatorVersion ()

The GetNavigatorVersion determines and returns the version of IE Mobile (if reportable by the device) where the WebSignature component is used. The browser version returned as a float value. For desktop IE this function always returns 0.0. For Windows Mobile devices it returns the browser

var fNV = GetNavigatorVersion();

alert ("VERSION: " + fNV);
GetWebSign Function

function GetWebSign ()

The GetWebSign function returns the default WebSignature object (assuming that it was created with the name “WebSignature”).

var oWS = GetWebSign();

alert(“WebSignature version: “ + oWS.Version)
OnClear Function

function OnClear ()

The OnClear function clears the content of default WebSignature control.

OnSubmit Function

function OnSubmit (sURL, sPar)

The OnSubmit function submits the content of the default WebSignature object to the specified URL. It also checks whether the WebSignature object has valid content. You may use this function instead of direct calls to WebSignatures Submit method

<input onclick="OnSubmit(“yourURL.asp”, 33)" type="button" value="Submit" />

WS_ShowVersion Function

function WS_ShowVersion ()

The WS_ShowVersion function shows a dialog message box with the version of currently installed WebSignature control.

Bennet-Tec WebSignatureTM .NET Serverside Control

- Version 1.0.0.6 – 29 Apr 2005 -

© Bennet-Tec Information Systems, Inc

The ServerSide SignatureServer Component provides simple support for parsing of signature data (from either a Stream or a String) and creation of a image from the parsed data.

How to Use the Server Side WebSignature .NET Component

To use the server side Signature Capture component in ASP.NET,

1) first add a reference to the corresponding assembly (BTIS.WebSignature.dll) to your ASP.NET project

2) then use the Signature Server component from BTIS.WebSignature namespace wherever you want. The easiest way is to create an instance of the object dynamically:

using BTIS.WebSignature;

SignatureServer SignSrv = new SignatureServer();

You may also add the server side component to your project from the Toolbox window (using Browse in Add/Remove items...).

3) the various properties and methods may then be used to parse and validate signature data and generate an image. The data will generally be from an input stream generated and sent using Post method from Client side WebSignature ActiveX control, or it may be data taken from a stored value such as from a database)

SignSrv.SetSignature(Request.InputStream);

Bitmap bmp = SignSrv.Picture;

Properties

The WebSignature .NET control has the following supported properties

SignatureString
SignatureData
NumCurves
NumPoints
Size

Picture
SignatureString property

The SignatureString property returns or sets signature data from or to a string (in string format). If no signature is defined this property returns a 'null' string.

SignatureData property

The SignatureData property acts like the SignatureString property but accepts data in a variety of formats ; String, Stream, Point[][], BinaryReader.

When read, this property always returns a set of curves (Point[][]).

NumCurves and NumPoints properties

The NumCurves and NumPoints properties are useful to assist in validating the data (is there a real signature)

The NumCurves property returns the number of curves in current signature.

The NumPoints property returns the total number of points in the signature.

Size property

Returns a Size object with it’s own Width and Height properties identifying the size of the signature. The size specified is the width and height (in pixels) of the smallest rectangle bounding all the points making up the signature curve.

Picture property

This property returns a bitmap created from current signature. The Bitmap will be a white rectangle with height and width as specified by the Size property and drawn with black polylines (signature curves).

You may use easily convert this bitmap to other formats using standard methods provided under the .NET framework.

Methods

The WebSignature control has 2 supported methods

SetSignature

CalculateSize

SetSignature Method

The SetSignature method assigns new data to the server side control

This methods returns false if the input data is invalid.

The data may be supplied as a string, a stream, return value from binary reader, or point array

public bool SetSignature (string strData)

public bool SetSignature (Stream stmData)

public bool SetSignature (BinaryReader rdr)

public bool SetSignature (Point[][] ptsData)

CalculateSize Method

An internal method (not for use by developers working with WebSignature users)
The CalculateSize method instructs the component to internally recalculate the size (width & height) of the signature held in the control after the signature has been changed (eg: after calling the SetSignature method).. The size calculated is the width and height of the smallest rectangle bounding all the points making up the signature curve.

public Size CalculateSize ()

Bennet-Tec WebSignature ActiveX component
p. 9 / 17

